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Abstract

In oligopoly market structures, optimal trade policies depend on the conduct of

competing firms. Whether firms compete with prices or quantities as the strategic

variables has a major quantitative and sometimes qualitative impact on the design of

optimal trade policies. Conduct is not directly observable, but we develop an econo-

metric method to infer it from data on prices, quantities, and a cost shifter such as

tariffs. We apply the method to the widely used case of a constant elasticity of sub-

stitution demand and ad valorem tariffs. Using simulations, we show how policymak-

ers could infer conduct from estimation and thereby generate domestic welfare gains

from strategic trade policy when conduct is ex-ante unknown. Several caveats from

the literature remain important, but our method mitigates concerns over imperfect

information on conduct.

1 Introduction

In the early 1980s, trade economists investigated whether a country has a unilateral incen-
tive to subsidize its exports or put tariffs on imports in oligopolistic industries (Brander
1995). The modeling strategy, whose canonical statement can be found in Brander and
Spencer (1985) involves a two-stage game. A government chooses a trade policy in the
first stage taking into account the way this policy will affect competition in the second
stage. The core idea is that the government’s ability to manipulate firms’ incentives via
subsidies will shift profits foreign firms to domestic firms. In the third-country market
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model where the home firm does not consume the product, raising domestic profits net
of the subsidy is sufficient for a welfare increase. Eaton and Grossman (1986) pointed
out that the benefits from export subsidies relied on the Cournot conduct assumption
in Brander and Spencer (1985). With Bertrand competition, export taxes would be the
optimal intervention.

Conduct matters for policy, but industries do not have labels stating whether the firms
compete à la Bertrand or Cournot. Consider two examples. Airlines (an industry studied
by Brander and Zhang 1990) appear to set prices since their websites post fares by route
and time. However, the airlines also choose the flight frequency and plane size on each
route. Thus, they also set quantities. Car makers post “manufacturer suggested retail
prices” but they also allocate vehicles to each dealer and then offer incentives to make
sure that dealers do not accumulate excessive inventories. These cases suggest that direct
observation of firms’ practices with respect to prices and quantities does not reveal un-
ambiguously which abstraction fits best for a given industry. Since conduct needs to be
known to determine which class of trade policy interventions are welfare improving, the
difficulty of ascertaining conduct has led some authors to conclude that strategic trade
policy is unlikely to be feasible in practice. (Grossman, 1986, p. 48) provides the definitive
statement of this view: “. . . [W]e do not now (and may never) have sufficient knowledge
and information to merit the implement of a policy of industrial targeting.”

In this paper, we propose an approach to carrying out strategic policy in settings where
the model of conduct is unknown, and show in Monte Carlo exercises that the approach
may improve welfare by moderate amounts. In our setting, policy makers have access
to price and quantity data for a series of export markets, but they do not know all the
demand, cost, and conduct primitives needed to determine optimal policy. We show that
standard tools from industrial organization (Berry 1994, Berry and Haile 2014) can be used
to estimate the unknown demand and cost parameters, while a particular conduct model
can then be tested for using a Hausman (1978) test. Using simulations for a simple CES
differentiated product model, we show that our method can generate systematic welfare
gains for a government that unilaterally chooses export subsidies (or taxes) to maximize
domestic welfare.

We are far from the first to consider the problem of recovering unknown conduct.
Indeed, a voluminous literature on this problem in the empirical industrial organization
literature has developed two broad approaches to tackling this problem. First, conduct
might be estimated, in the sense that there exists a (usually continuous) parameter that
indexes different conduct models that can be recovered from price and quantity data.
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Examples include the estimation of various “conjectural variation” models (e.g. Iwata
1974, Bresnahan 1981, 1982, Brander and Zhang 1990) or the more recent “rival profit
weight” models developed in Ciliberto and Williams (2014) and Miller and Weinberg
(2017). Alternatively, one can impose a conduct model and then formally test whether a
particular conduct model fits the data (e.g. Bresnahan 1987,Gasmi et al. 1992, Backus et al.
2021, Duarte et al. 2023).

Corts (1999) raised concern over the internal consistency problem in the estimation ap-
proach using conjectural variations. Our paper fits within the second major approach to
conduct, which emphasizes testing. The recent literature on testing conduct in industrial
organization literature includes Backus et al. 2021 and Duarte et al. 2023. These papers
test for model consistency by checking the difference between predicted markups from
two alternative supply models conditional on demand estimates that are obtained without
imposing a supply model. This testing procedure require that researchers ignore poten-
tially valuable supply-side information when estimating demand-side parameters.

Our conduct testing method develops a different approach to assessing model consis-
tency. It relies on the well known insight that the demand-side of an imperfectly compet-
itive model can be consistently identified without perfect knowledge of supply side conduct.
Imposing a conduct model and estimating both demand and cost parameters simulta-
neously, on the other hand, can potentially provide an estimator that is more efficient,
but at the cost of generating an inconsistent estimator of the demand parameters when
the imposed conduct model is incorrectly specified. This means that for each potential
conduct regime R, we have two estimators; a demand based estimator that is always con-
sistent (provided sufficient instruments exist and the demand system is well specified),
and a demand and conduct based estimator that is only consistent if the conduct model
is correct. This is precisely the sort of setting where the two-estimator specification test
proposed Hausman (1978) can be used, and rejection of the null can be understood as a
rejection of the conduct model R.

We provide a proof-of-concept of this testing approach using a series of Monte Carlo
simulations which illustrate that implementing strategic trade policy when conduct is ex-
ante unknown can still be welfare improving when guided by our proposed method. We
consider a setting where a policy maker observes prices, quantities, and ad valorem tar-
iffs over a series of differentiated product oligopoly export markets. To conduct strategic
trade policy, the policy maker needs to estimate demand, the unobserved marginal costs
of the competitors in each market, as well as the appropriate model of conduct. In our
simulations, the policy maker estimates these objects and tests for Cournot and Bertrand
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conduct using our proposed Hausman test. We show that the Hausman test is able to dis-
criminate between models even when there are a modest number of export markets, and
that implementing strategic trade policy whenever it is possible to discriminate between
conduct models leads to moderate welfare gains.

Our approach allows researchers to obtain more precise estimates of demand parame-
ters by augmenting demand only moments with supply side moments, and then checking
the distance between the demand only and the demand-and-supply estimates as a model
consistency check. This is a different notion of model consistency than that proposed by
Backus et al. (2021) who Duarte et al. (2023), who instead rely on GMM criterion functions
defined over supply-side moments conditional on a supply-side agnostic estimate of the
demand system.

We directly test the relevance of our metric of model consistency by examining the
performance of a policy maker who, instead of running a formal Hausman test to de-
termine which model fits the data, simply chooses the model (Bertrand or Cournot) that
is closest to the demand only estimates. This particular decision rule has the desirable
property that the policy maker always chooses some model to conduct trade policy, but
has the added risk, relative to the Hausman test, that they may choose welfare harming
trade policy when estimates are imprecise. In contrast, when we implement the Haus-
man test regime, the policy maker chooses laissez-faire if the test either accepts, or rejects,
both models. This happens more often when there are few markets and therefore demand
estimates are imprecise. Interestingly, we find that the “nearest neighbor” framework for
choosing conduct and trade policy outperforms our Hausman test, in the sense that a social
planner is able to obtain higher welfare gains by simply choosing the model of best fit,
rather than only pursuing interventionist trade policy when we can definitively reject one
model over the other.

The paper proceeds as follows. Section 2 returns to the Brander and Spencer (1985)
setup, applying a constant elasticity of substitution (CES) demand structure. This yields
some familiar results but also a surprising new feature: Cournot conduct does not nec-
essarily imply strategic substitutes with CES demand. Section 3 extends the model to
include multiple firms and multiple markets. Section 4 proposes a conduct-inference ap-
proach based on the Hausman (1978) test. We carry out a series of simulations in Section 5
to investigate the welfare effects of strategic trade policy based on our conduct-inference
approaches. Section 6 concludes with some important caveats.
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2 Two-firm third-market model

To provide the basic intuition for the importance of firm conduct to optimal trade pol-
icy under oligopoly, we begin by presenting classic results for the two-firm third-market
model introduced by Brander and Spencer (1985). We develop these results for a CES
demand system, which we will rely on in subsequent sections where we extend the envi-
ronment to settings with more firms and markets.

2.1 Environment

Assume that there are two production origins and each has one firm. Both firms sell to a
third market with market size M only. Denote the domestic firm’s export price as p and
the foreign firm’s export price as p∗. The quantities of exports are x and y, and A and A∗

are demand shifters.
x =M

p−σAσ−1

p1−σAσ−1 + (p∗)1−σ(A∗)σ−1

y =M
(p∗)−σ(A∗)σ−1

p1−σAσ−1 + (p∗)1−σ(A∗)σ−1

The constant marginal costs of production are c and c∗ respectively. Now the domestic
country imposes an ad-valorem export subsidy or tax s on its firm to maximize its welfare
W (s). The profits of the domestic firm and the foreign firm are

π(x, y; s) = (1 + s)px− cx

π∗(x, y; s) = p∗y − c∗y

where s is the ad-valorem subsidy provided to the domestic exporting firm. Note that if
s < 0, the government taxes the domestic firm’s exports, and rebates those taxes back to
consumers.1 Given s, both firms choose quantities or prices depending on the conduct to
maximize their profits simultaneously. The welfare of the domestic country is given by

W (s) = π(x, y; s)− spx = px− cx,

1Implicit in this model is an “outside” perfectly competitive sector that produces a numeraire good that
consumers purchase and consume with the domestic profits and taxes rebated to them. We set the price of
this numeraire good to 1.
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2.2 Strategic substitutes, complements, and optimal policy

Following Brander and Spencer (1985), Eaton and Grossman (1986), and Brander (1995),
we introduce a two-stage game to solve for the optimal subsidy or tax given the conduct.
In the first stage, the domestic country imposes export subsidy (or tax) s.2 In the sec-
ond stage, firms in each country simultaneously choose quantities sold to each market or
prices (depending on conduct) to maximize their profits given s. In what follows, we refer
to the strategic variable z as the choice variable (either price of quantity) for the appropriate
Nash equilibrium in the second stage.

One of the core insights from the third market model is that taxes or subsidies can
help commit the domestic firm to acting “as-if” they were the first-mover in a sequen-
tial game. This can allow the domestic firm to obtain higher profits—rebated back to
domestic consumers—at the expense of the foreign firm; this is often called the “profit
shifting” motive for strategic trade policy. However, the exact type of action— and there-
fore policy—a firm would want to use as a first mover depends on whether the choice
variables are strategic complements—where an increase in strategy variable z by the do-
mestic firm induces the foreign firm to increase their z∗—or strategic substitutes, where an
increase in z by domestic firms induces the foreign firm to decrease z∗. In general, a strate-
gic variable will be a strategic substitute in this class of game whenever πz∗z ≡ ∂2π

∂z∂z∗
< 0,

while the strategic variable will be a strategic complement when πz∗z > 0 (Bulow et al.
1985).

In the homogeneous good Cournot game considered in Brander and Spencer (1985),
quantities are always strategic substitutes. This means the policy maker will want to
encourage the domestic firm commit to a higher level of output, as this will induce the
foreign firm to decrease their output, allowing the domestic firm to capture more profit;
this is achieved by subsidizing the domestic firm’s output. On the other hand, in the dif-
ferentiated product setting considered in Eaton and Grossman (1986), prices are strategic
complements. This means that the domestic firm can potentially extract more profit by
softening competition and committing to higher prices, which the foreign firm will then
“accommodate” by raising their price as well; this commitment to higher prices can be
imposed by the government choosing an export tax, rather than a subsidy.

The same intuition approximately applies to the differentiated product, CES case de-
veloped here, although with an important ambiguity for the Cournot case which we shall
become clearer in a moment. It is straightforward to verify that the optimal export sub-

2If s > 0 there is a subsidy, while if s < 0 there is a tax.
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sidy or tax sC of the domestic country under Cournot competition will satisfy:3

sC = −πy
π∗
yx

pπ∗
yy + xpxπ∗

yy − xpyπ∗
yx

(1)

while under Bertrand competition, it will satisfy

sB = −
πp∗π

∗
p∗p

pxpπ∗
p∗p∗ + xπ∗

p∗p∗ − pxp∗π∗
p∗p

(2)

We derive these results formally in Appendix A and Appendix B, with the above results
nesting the general case of many firms and countries to the special case of two export
countries with one exporting firm each. Since πy < 0, πp∗ > 0, pπ∗

yy + xpxπ
∗
yy − xpyπ

∗
yx < 0

and pxpπ
∗
p∗p∗ + xπ∗

p∗p∗ − pxp∗π
∗
p∗p > 0 (see Appendix B) it is easy to verify that whenever

π∗
yx < 0 or π∗

p∗p < 0 (strategic substitutes) the optimal policy is a subsidy with sC > 0 or
sB > 0, while whenever π∗

yx > 0 or π∗
p∗p > 0 (strategic complements), the optimal policy is

a tax.

To determine the sign of the optimal policy in the CES demand model considered
here, it is useful to define Sx as the revenue-based market share for good x, and Sy as
the revenue based market share for good y.4 We can solve for π∗

yx or π∗
p∗p as a function of

exogenous and endogenous variables as follows:

Cournot: π∗
yx =

∂2π∗

∂x∂y
= p∗x + yp∗yx = −

(
σ − 1

σ

)2
1

M
pp∗ (1− 2Sy)

Bertrand: π∗
p∗p =

∂2π∗

∂p∂p∗
= yp + p∗yp∗p − c∗pp∗p = (1− σ)2M

p∗ − c∗

p∗
S2
ySx

1

p∗p
> 0

(3)

Since CES demand is a special case of the model developed in Eaton and Grossman
(1986), we obtain the standard result that Bertrand pricing always involves strategic sub-
stitutes, and therefore the optimal trade policy involves an export tax. On the other
hand, the Brander and Spencer (1985) intuition for strategic substitutes with Cournot—
which was developed for a homogeneous goods model—does not always apply to the
CES differentiated goods context considered here. In fact, under CES demand, Cournot
competition will only involve strategic substitutes on the foreign firm’s reaction function
whenever the foreign firm is small, i.e. Sy < 1

2
; conversely, whenever the foreign firm

is large, i.e. Sy > 1
2

the Cournot model involves strategic complements. This can lead

3Here, ab denotes the partial derivative of a with respect to b.
4Thus, we have Sx = xp

xp+yp∗ and Sy = yp∗

xp+yp∗ .
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to non-monotonicities in the firm’s reaction functions under Cournot, which can make
determining the optimal policy complex.

Figure 1 visualizes the best response functions of the two firms under two different
modes of conduct; Cournot in panels (a) and (b), and Bertrand in panels (c) and (d).
Panels (a) and (b) show that the best response functions are not monotonic under Cournot
competition. Starting from the symmetric equilibrium and giving an export subsidy s1 >
0 to the domestic firm will increase its export quantities and make its market share exceed
0.5. Under this scenario, π∗

yx < 0 and the best response of the foreign firm is to decrease
its export quantities (strategic substitutes). Similarly, when imposing an export tax on
the domestic firm, in the new equilibrium, π∗

yx > 0, both firms will decrease their export
quantities (strategic complements).

Figure 1c and Figure 1d show that the best response functions are monotonically in-
creasing under Bertrand competition, given the two firms are always strategic comple-
ments. Therefore, the prices of the two firms will move in the same direction with export
subsidy or tax imposed on the domestic firm.

The slopes of the reaction functions are crucial for understanding optimal policy. We
will see that under Bertrand competition, a robust result is that the optimal policy is
an export tax. With Cournot competition, export subsidies are often preferable, but this
depends on market sizes as we shall see in the next section.

2.3 Numerical examples in the base case

In general, correctly implementing the socially optimal strategic trade policy depends on
whether firms compete in prices or quantities, i.e. the model of conduct. As we move
toward our final econometric exercise where we consider an environment where a policy
maker wishes to conduct strategic trade policy while not knowing the appropriate con-
duct model, it is useful to first consider what this simple model tells us about the costs
and benefits of getting the conduct model right. In particular, we have already shown
that the sign of the optimal policy may flip if the policy maker gets the model of conduct
wrong. But what about magnitudes? In this subsection, we show that under some pa-
rameterizations of our model, the benefit of being right may be small, while the costs of
being wrong can be sizeable. This suggests that having to estimate conduct is a potentially
risky enterprise, where econometric uncertainty is important take seriously.
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Figure 1: Best response functions with export subsidy or tax under CES demand

(a) Cournot, export subsidy (b) Cournot, export tax

(c) Bertrand, export subsidy (d) Bertrand, export tax

Note: The red and blue lines are best-response functions of firm 1 and firm 2,
respectively, with CES demand with A = A∗ and c = c∗ = 0.25. The orange line is the
best response function of firm 1 after imposing an ad valorem export subsidy s1 = 0.35
(panels a and c) or tax s1 = −0.35 (panels b and d).
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Figure 2: Welfare change with export subsidy/tax in two-firm third-market model

(a) Country with the larger firm
imposes export subsidy/tax

(b) Country with the smaller firm
imposes export tax

Note: The x-axis is the ad valorem subsidy on the exporter from country 1. The y-axis
is the percentage welfare change relative to no subsidy. The vertical orange and blue
lines show the welfare-maximizing subsidies for Bertrand and Cournot conduct. The
rival country sets s2 = 0. We set σ = 5, A = exp(0.6)0.25, A∗ = exp(1.4)0.25,
c = c∗ = 1 + exp(1.0).

Figure 2 visualizes the welfare change of a country under different export subsidy or
tax in terms of marginal cost for a given set of exogenous parameters. Assume that the
domestic firm is the one that has a larger market share in the third market. In this exam-
ple, as shown in Figure 2a the domestic country will impose an optimal export subsidy
sC > 0 under Cournot competition and impose an optimal tax sB < 0 under Bertrand
competition. Note that the welfare loss of inferring the wrong conduct and imposing
the subsequent sC or sB is substantial. If the true conduct is Cournot and the domestic
country mistakenly assumes Bertrand, the welfare loss is around 1.5% with the export
tax. The loss is even larger if the true conduct is Bertrand; under this specific DGP, if the
domestic country imposes an export subsidy based on Cournot, welfare falls by 4.4%. As
the foreign firm has a smaller market share at initial equilibrium, as shown in Figure 2b,
the foreign country will impose an optimal export tax sC < 0 under Cournot competition
and also impose an optimal tax sB < 0 under Bertrand competition. In this case, the op-
timal export tax based on the Cournot competition will still improve the welfare of the
foreign country if the true conduct is Bertrand, but the welfare gain is smaller than the
optimal export tax based on the true conduct. On the other hand, there is welfare loss if
the foreign country imposes an export subsidy based on the Bertrand competition while
the true conduct is Cournot.

While these numbers come from a particular parametric example, note that under al-
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ternative parameter settings, the welfare loss of inferring the wrong conduct could be
larger or smaller. Below, we run a series of simulations—where we draw demand and
supply parameters for a collection of independent export markets—to quantify the po-
tential magnitude of these gains and loses on average.

3 Extending the third-market model

Having now worked through the canonical two firm third market model, we now extend
our CES environment to a setting with many firms, countries, as well as a domestic sector
in each market. This extension is important to accommodate econometric estimation in
real world settings.

3.1 Environment

Assume that there are C production origins and each has Nc exporting firms. The set of
exporting firms in country c is denoted by Ic. There are also M sales markets without any
exporters. The total number of markets is C +M .

Each market m has a local firm indexed by i = 0 that only sells to market m; i.e.,
they do not export.5 Each firm only produces a single variety. For simplicity, we assume
that each exporting firm sell in all markets including its domestic market, i.e., the total
number of products in market m is 1+

∑C
c=1Nc. The quantity sold by firm i from country

c in market m is parameterized as

qicm = Ym
p−σicmA

σ−1
icm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′∈Ωc′m

(
pi′c′m
Ai′c′m

)1−σ (4)

where Ym is the total demand in market m, picm is the price, Aicm is a firm-market specific
demand shifter, and Ωcm is a set of firms from production origin c operating in market m.
For simplicity, we assume that every exporting firm sells in all markets.

The inverse demand function is then given by:

picm(qm) = Ym
q
− 1

σ
icmA

σ−1
σ

icm

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′∈Ωc′m
(qi′c′mAi′c′m)

σ−1
σ

5The presence of the local firm implies that aggregates sales of the foreign oligopolists is not fixed.
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The variable profit of firm i from country c in market m without any tax or subsidy is

πicm = picmqicm − cicmqicm

The total profit of firm i from country c is

πic =
C+M∑
m=1

πicm

Aggregating profits of all firms and subtracting the total subsidy paid to (or adding the
total tax collected from) all exporting firms in country c, the total welfare of country c is

Wc(s) =
∑
i∈Ic

πic −
∑
m̸=c

scm
∑
i∈Ic

picmqicm (5)

where scm is the ad valorem export subsidy (or tax) imposed by country c on all firms that
export to market m.

To make estimation and simulation of this model feasible, it is useful to parameterize
the demand and supply sides of the model. Specifically, the quantity sold by firm i from
country c in market m is parameterized as

qicm = Ym
p−σicm exp(ξicm)

p1−σ0mm exp(ξ0mm) +
∑

c′
∑

i′∈Ωc′m
p1−σi′c′m exp(ξi′c′m)

(6)

where ξicm ≡ (σ − 1) ln (Aicm)

The constant marginal cost of selling from production origin c to market m is param-
eterized as

cicm = τc(i)m exp(ωicm)

where τc(i)m denotes ad valorem tariffs charged on goods moving from origin country c to
market m, and ωicm is a firm-origin-destination specific (log) productivity shock.

Firms choose prices to maximize profits in each market, which leads to the standard
markup rule,

picm =
ϵRicm

ϵRicm − 1
τc(i)m exp(ωicm).

where ϵRicm is a firm’s perceived demand elasticity, whose particular functional form varies
with the assumed conduct model R = B (Bertrand) or R = C (Cournot). If we assume
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that firms choose price and quantity pair taking their rivals prices as fixed as in Bertrand
competition, then one can show that

ϵBicm = σ + (1− σ)Sicm (pm, ξm) , (7)

where Sicm (pm, ξm) ≡ picmqicm
p0mmq0mm+

∑
c′
∑

j∈Ωc′m
picmqicm

=
p1−σ
icm exp(ξicm)

p1−σ
0mm exp(ξ0mm)+

∑
c′
∑

j∈Ωc′m
p1−σ
jc′m exp(ξjc′m)

is the revenue market share of firm i from production origin c in market m. These market
shares are determined by the vector of prices chosen by each firm operating in market m
(pm), as well as the vector of demand shocks for each firm operating in market m (ξm).

On the other hand, if firms choose their individual price and quantity pairs taking
their rival’s outputs as given, the relevant demand elasticities will then be given by:

ϵCicm =
σ

1 + (σ − 1)Sicm (pm, ξm)
. (8)

The difference in perceived demand elasticities under Bertrand and Cournot then leads
to a separate pricing rule for each conduct model R = B,C:

picm =


(

1
(σ−1)(1−Sicm)

+ 1
)
τc(i)m exp(ωicm) = µB(σ, Sicm)τc(i)m exp(ωicm) if R = B

σ
(σ−1)(1−Sicm)

τc(i)m exp(ωicm) = µC(σ, Sicm)τc(i)m exp(ωicm) if R = C
(9)

where µR(σ, Sicm) denotes the markup function under pricing rule R = B,C.6

Note that these equilibrium pricing rules generate weakly higher markups under
Cournot competition compared to Bertrand. This is because when firms believe their ri-
vals quantities are fixed when they choose their price and quantity pair, individual price
cuts must implicitly be matched by their rivals for their quantities to remain fixed. This
implicitly softens price competition relative to a model where rival prices are assumed
to be fixed in response to price cuts, thereby leading firms to exercise a higher degree of
market power under Cournot competition.

3.2 Optimal export subsidy or tax

As with the two-firm third-market model, we introduce a two-stage game to solve the
optimal export subsidy /tax, sCcm and sBcm. Now in the first stage, country c imposes a set
of market-specific per-unit export subsidies (or taxes) scm on all exporting firms. Since
production involves constant marginal costs, each firm’s profit maximization problem is

6The own elasticity derivations are provided for Cournot and Bertrand in appendix A.
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independent in each market. In Appendix A we derive the following formulas which
characterize the optimal subsidy, sCcm and sBcm, under Cournot and Bertrand competition:

sCcm =

∑
i∈Ic

∂πicm(Q)
∂q0mm

dq0mm

dscm
+
∑

i∈Ic
∑

j ̸=i
∂πicm(Q)
∂qjcm

dqjcm
dscm

+
∑

i∈Ic
∑

k ̸=c
∑

j∈Ik
∂πicm(Q)
∂qjkm

dqjkm
dscm∑

i∈Ic

(
picm

dqicm
dscm

+ qicm
∑

k

∑
j∈Ik

(
∂picm
∂qjkm

dqjkm
dscm

+ ∂picm
∂q0mm

dq0mm

dscm

))
sBcm =

∑
i∈Ic

∂πicm(P)
∂p0mm

dp0mm

dscm
+
∑

i∈Ic
∑

j ̸=c
∂πicm(P)
∂pjcm

dpjcm
dscm

+
∑

i∈Ic
∑

k ̸=c
∑

j∈Ik
∂πicm(P)
∂pjkm

dpjkm
dscm∑

i∈Ic

(
qicm

dpicm
dscm

+ picm
∑

k

∑
j∈Ik

(
∂qicm
∂pjkm

dpjkm
dscm

+ ∂qicm
∂p0mm

dp0mm

dscm

))
(10)

The optimality conditions in equation (10) show that the optimal tax or subsidy now de-
pends on three sets of terms in the numerator. Moving from right to left, we have the ef-
fects of the subsidy on the firms from the country imposing the policy, the effects on firms
from the rival countries and finally the effect on the output of the local firm in the tar-
get market. While we cannot make further progress on these equations analytically—as
the optimal subsidy appears on both the left- and right- hand side of these expressions—
we use them to solve for optimal subsidy and taxes numerically via fixed point iteration.
Specifically, for each market m and given c, we solve for the subsidy or tax with starting
value s0cm = 0 based on equation (10), and then update the subsidy or tax in the right-hand
side of the equation until convergence.

3.3 Numerical examples in the extended case

Now we modify the simulations in Section 2.3 to include an additional local firm in the
third market. The data generating process is described in Appendix D. With three firms
competing in the third market, the sign of the optimal export subsidy or tax becomes more
ambiguous. Figure 3 shows a case where the local firm has a market share of less than a
quarter of the market. In this case, both the exporters—both the country with a smaller
market share, and the one with the larger share—will both want to impose an optimal
export subsidy sC > 0 under Cournot competition. Thus, it resembles the classic Brander
and Spencer (1985) case despite the use of product differentiation and the presence of
the domestic competitor. One novel point we see here is that the country with the larger
market share wants to impose a bigger export subsidy. This runs somewhat counter to the
idea of using a subsidy to overcome a weakness, but it makes sense here because bigger
domestic firm will tend to face a rival with more negative slope of their reaction function.

Under Bertrand competition, we obtain the Eaton and Grossman (1986) result of an
optimal tax (sB < 0). In both cases there is notable welfare loss when the wrong conduct is
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inferred. The situation is particularly bad when the policy maker believes there is Cournot
competition, but the true conduct is Bertrand. Then we see export subsidizing countries
have greater than 20% losses in welfare. Inferring Bertrand is a less costly mistake.

Alternatively, Figure 4 shows a case where the local firm has a market share of more
than 85% in the third market. Under this DGP, both countries impose an optimal export
tax sB < 0 under Bertrand and sC < 0 under Cournot conduct. Interestingly, there is still
a welfare gain even when the wrong conduct is inferred. However, inferring Cournot
incorrectly leads the home country to impose a smaller than optimal export tax.

Two additional visualizations on welfare changes with multiple production origins
and multiple firms are provided in Appendix F. The main takeaway from these examples
is that knowing the correct conduct is always useful for designing optimal trade policy.
Furthermore, when the two rival exporters dominate the third market (as in the classic
models of the 1980s), then knowing conduct can avoid a sign error in optimal policy.

Figure 3: C = 2, N = 1, with local firm (market share of local firm < 25%)

(a) Larger exporting country imposes
export subsidy/tax

(b) Smaller exporting country imposes
export subsidy/tax

Note: The x-axis is the ad valorem subsidy on the exporter from country 1. The y-axis is the
percentage welfare change relative to no subsidy. The vertical orange and blue lines show the
welfare-maximizing subsidies for Bertrand and Cournot conduct. The rival country sets s2 = 0.
Denoting the two production origins as countries 1 and country 2, and the “third-market” as
country 3, we set σ = 5, ξ113 = 0.6, ξ123 = 1.4, ξ033 = −6.0, ω113 = ω123 = ω033 = 1.0,
τ13 = τ23 = 1 + exp(1.0), τ33 = 1.0, Y3 = 1. Equilibrium prices, quantities and optimal export
subsidies or taxes are solved via fixed-point iteration.
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Figure 4: C = 2, N = 1, with local firm (market share of local firm > 85%)

(a) Larger exporting country imposes
export tax

(b) Smaller exporting country imposes
export tax

Note: The x-axis is the ad valorem subsidy on the exporter from country 1. The y-axis is the
percentage welfare change relative to no subsidy. The vertical orange and blue lines show the
welfare-maximizing subsidies for Bertrand and Cournot conduct. The rival country sets s2 = 0.
Denoting the two production origins as countries 1 and country 2, and the “third-market” as
country 3, we set σ = 5, ξ113 = 0.8, ξ123 = 1.2, ξ033 = 6.0, ω113 = ω123 = ω033 = 1.0,
τ13 = τ23 = 1 + exp(1.0), τ33 = 1.0, Y3 = 1.

4 Inferring conduct through a Hausman Test

In the previous sections, we presented variants of the classic Brander and Spencer (1985)
third country model of strategic trade policy. In practice, realizing the potential welfare
gains from optimal policy requires that policy makers know (i) the demand and costs of
the competing firms, and (ii) the appropriate model of conduct. All of these objects are
potentially unobserved by the policy maker. Importantly, since the sign of optimal policy
may not even be known if conduct is unknown, some researchers have concluded that
strategic trade policy is unlikely to provide a successful guide to implementing welfare
improving trade policies.

In this section, we develop a potential path forward for realizing the gains from strate-
gic trade policy; estimating demand and costs and then testing for a particular model of
conduct. The setting is one in which policy makers have access of data on the prices and
quantities sold for various firms in a series of third marketsm, thereby allowing the policy
maker to estimate demand and cost using standard tools from the industrial organization
literature (e.g. Berry 1994, Berry and Haile 2014). We show that the techniques used to re-
cover demand and costs from price and quantity data naturally suggest a straightforward
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to implement Hausman test for the appropriate model of conduct.

We present this test in the context particular parameter model developed in Section 3;
this is both for expositional convenience, as well as to elucidate the DGP we will use in the
Monte Carlo is Section 5, where we consider the performance of this approach in a setting
where the policy maker needs to estimate demand, cost, and conduct. However, we also
show in Appendix C that this test can be generalized to more flexible models of demand
and cost.

In what follows, we assume that the policy maker knows the CES functional form in
Equation (4), but does not know (σ, ξm, ωm), nor the mode of conduct R; rather, they only
observe for a series of marketsm then prices, quantities, and ad valorem tariffs (pm,qm, τm).
To tackle this problem, we first show that this model readily allows the policy maker to
recover a consistent estimate of demand and productivity shocks, (ξm, ωm), as long as they
are able to generate a consistent estimate of σ. The fact that unknown demand and supply
parameters are invertible conditional on the global demand parameter σ is key to devel-
oping our conduct test; specifically we rely on the commonly noted insight that as long as
supply-side instruments exist, demand parameters can be estimated without imposing a
conduct model. On the other hand, recovering supply side parameters generally requires
knowledge of demand parameters and imposing a conduct a model; this provides a series
of overidentifying restrictions that will be more efficient when a researcher imposes the
correct conduct model, but inconsistent when the wrong conduct model is imposed. This
naturally leads to a Hausman test for conduct.

4.1 Invertibility of (ξm, ωm) given σ

While the policy maker does not directly know anything about each firm’s costs, if they
know how each firm chooses their prices, they can recover estimates of marginal costs
by relying on the fact that profit maximizing firms will choose prices to equate marginal
revenues with marginal costs. Specifically, if the policy maker is able to construct an
estimate of marginal revenue for each firm, then they can recover marginal cost estimates
as in Rosse (1970) by simply setting this unknown object equal to (estimated) marginal
revenue. For the model developed here, this mapping is implicit in the pricing rule (9);
rearranging this expression yields the following equation which can be used to recover
estimates of the productivity shocks form all firm products, ω̂icm, given observed data and
and estimate of the elasticity of substitution σ̂ :
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ω̂icm(σ̂, R) = ln picm − ln
(
µR(σ̂, Sicm)τc(i)m

)
(11)

A similar inversion exists for the unknown demand shocks as well; in particular, it is
straightforward to show that (4) implies:

ξicm − ξ0mm = ln
Sicm
S0cm

− (1− σ) ln

(
picm
p0mm

)
The above provides a mapping between relative prices, market shares, the elasticity and
substitution, and relative demand shocks, ξicm− ξ0cm. Since CES demand systems are homo-
geneous of degree zero in demand shocks, the overall scale of these demand shocks are
not relevant for counterfactuals. As a result, for the purpose of determining the optimal
subsidy, a policy maker can normalize ξ0mm to zero, recovering the remaining demand
shocks as:

ξ̂icm(σ̂) = ln
Sicm
S0cm

− (1− σ̂) ln

(
picm
p0mm

)
(12)

Together, Equation (11) and Equation (12) provide a way for the policy maker to recover
all the relevant unknown demand and supply shocks for purpose of determining optimal
policy, given σ and the mode of conduct R. In the next two subsections, we then show
how the policy maker can use these properties to generate estimating equations for σ,
which then provide over-identifying restrictions to test for the appropriate conduct model
R.

4.2 Estimating σ

To recover the global demand parameter, σ, a policy maker can rely on standard demand
estimation techniques. A simple tool for this purpose that is available when demand
is CES is based on the following transformation of demand, which generates a linear
estimating equation (Berry 1994, Björnerstedt and Verboven 2016):

ln
Sicm
S0cm

= (1− σ) ln

(
picm
p0mm

)
+ ξicm − ξ0mm (13)

Here, the structural error term—which we call a firm’s relative demand shock—is given
by ξicm − ξ0mm. While (1 − σ) could be estimated by applying OLS to Equation (13), in
general this procedure will not generate consistent estimates of σ as equilibrium prices
picm will tend to be correlated with relative demand shocks for two reasons. First, accord-
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ing to both pricing rules in Equation (9), firms with higher revenue shares will tend to
charge higher prices. Since higher revenue shares can directly be generated by a firm ex-
periencing a larger relative demand shock, this generates a positive correlation between
prices and revenue shares. Second, since prices also move with marginal costs, prices
will be correlated with relative demand shocks whenever there is a systematic correlation
between demand shocks and productivity. For example, higher quality goods may be
more difficult to produce, which will tend to generate a positive correlation between Aicm
and ωicm (Hottman et al. 2016, Jaumandreu and Yin 2018, Orr 2022, Forlani et al. 2023).
Alternatively, more productive firms may simply select into producing higher quality
goods, as emphasized by Kugler and Verhoogen (2012), which would generate a negative
correlation between ξicm and ωicm.

Consistent estimation of Equation (13) generally requires an instrumental variable that
is excluded from the demand system, correlated with price, and uncorrelated with rela-
tive demand shocks. Equation (9) provides a natural candidate for such an instrument;
tariffs τc(i)m. Notably, consumers do not directly care about tariffs (except through their
impact on the price they pay)—thereby excluding this variable from direct consideration
in the demand system—while tariffs will generally increase prices through the equilib-
rium pricing rules. In what follows, we assume tariffs are not set in an endogenous
way—or more formally, that E(ξicm − ξ0cm) τc(i)m = 0— so that Equation (13) can be es-
timated using a standard linear IV estimator, with τc(i)m serving as the instrument. This
provides a researcher with an estimated value of σ, which we will denote by σ̂D.

Note that when justifying the use of τc(i)m as an instrument, we could rely on either the
Bertrand or Cournot pricing rule; in fact, as long as firms internalize costs when choos-
ing prices, exogenous cost shifters such as tariffs can be used as instruments to identify
demand. This means that our identification strategy for σ̂D is robust to the policy maker’s
lack of knowledge on the exact mode of conduct.

On the other hand, note that if the policy maker knew the mode of conduct, they could
obtain more efficient estimates of σ by leveraging their knowledge of the firm’s exact
pricing rule in Equation (9). More precisely, the pricing rule for a given conduct model R
provides a series of overidentifying restrictions that, when correctly specified, should lead
to more efficient estimates of σ. This is because a correctly specified pricing rule tells use
how market shares should vary across markets conditional on σ,which provides a series
of further moments to help pin down σ. We generate an estimator that takes advantage
of this idea by formulating another estimating equation for σ by substituting Equation (9)
into Equation (13), yielding:
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ln
Sicm
S0cm

= (1− σ)
(
lnµR(σ, Sicm)− lnµR(σ, S0cm)

)
+ (1− σ) ln τc(i)m

= +(1− σ)ωicm + ξicm − ξ0mm︸ ︷︷ ︸
≡ νicm

(14)

Treating the sum of the productivity and relative demand shocks as the new struc-
tural residual, we can obtain a new estimate of σ by estimating the above model by
nonlinear GMM. Since market shares enter the markup rule for each proposed model
of conduct R = {B,C}, we still need to rely on an instrumental variables formulation of
the estimator—rather than a nonlinear least squares procedure — as Sicm will tend to be
correlated with both relative demand shocks and productivity shocks. For this purpose,
we implement a nonlinear GMM estimator that relies on the following moment condition
Eνicmτc(i)m = 0. Validity of this moment condition requires that tariffs be uncorrelated
with both demand and productivity shocks; a sufficient condition for which is that tariffs
be completely exogenous.7

Estimating Equation (14) for a given conduct model R only provides a single moment
for identifying σ. In practice, this variation alone may be more or less efficient at identify-
ing σ than estimating Equation (13) alone. To generate an estimator for σ that will tend to
be more efficient under a correctly specified model of conduct R, we propose estimating
both Equation (13) and Equation (14) simultaneously using a system GMM estimator. In
practice, we implement this through a two step procedure which chooses an approxima-
tion to the optimal weighting matrix for overidentified models as in Hansen (1982). We
denote the estimate of σ obtained by this estimator as σ̂R,where R denotes the particular
model of conduct imposed in Equation (14).

While σ̂R will tend to be more efficient than σ̂D when R is correctly chosen, σ̂R will be
inconsistent if the wrong conduct model is imposed on the data. This is because the pric-
ing rule estimator imposes a series of mispecified moments to identify σ. In what follows,
we take advantage of the fact that these two estimators generate a tradeoff between con-
sistency and efficiency, which is precisely what a Hausman test was designed to exploit
in model testing.

7An important property we use here is that the policy maker knows that the passthrough rate of tariffs
to marginal costs is 1; this means the above equation only has one unknown parameter to be estimated
(σ),rather than σ and the passthrough rate of tariffs to marginal costs. As a result, we only need a single
instrument to identify this model. While this is appropriate for a setting where ad-valorem tariffs are avail-
able and exogenous, we show in Appendix C that we can also generalize our approach to settings where
the researcher only has access to a series of supply-side instruments where the pass-through rate of the
instrument to marginal costs is unknown and therefore must also be estimated.
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4.3 Hausman Test

The Hausman test, developed in Hausman (1978), is a standard econometric tool to test
for whether two estimators of the same object are converging to the same probability
limit. This type of test is particularly useful when it is known that one of the estimators
will only be consistent when a stronger set of conditions hold, while another estimator
is consistent under weaker conditions. For example, the Hausman test is often used in a
panel data context to test for whether random effects (which imposes the strong condition
that individual specific effects are uncorrelated with other regressors) are appropriate,
with the alternative, less efficient, estimator being the fixed effects estimator, which does
not require uncorrelated of the individual fixed effects.

In our context, the Hausman test can be computed as follows:

H =

(
σ̂D − σ̂R

)2
V̂ar(σ̂D − σ̂R)

where V̂ar(σ̂D − σ̂R) is the estimated variance of σ̂D − σ̂R.8 Note that the Hausman test
simply tests for whether the two estimators are close enough to one another, adjusting for
the variance of each estimator.

Hausman (1978) shows that this test statistic is asymptotically distributed as a chi-
square distribution with one degree of freedom. As a result, we can then use this statstic
to formally test the hypothesis that σ̂D = σ̂R. Rejection of this hypothesis leads to rejection
of a particular conduct model R; this is because we know the demand esitmator is σ̂D is
consistent for any conduct model. As a result, differences in σ̂D and σ̂R tells us the conduct
model R is likely mispecified. On the other hand, failing to reject means that a particular
conduct model R is potentially capable of explaining the data.

In the next section of this paper, we examine the behavior of this testing procedure
in a series of Monte Carlo exercises. Specifically, we consider a policy maker who ob-
serves prices, quantity, and tariff data for a series of markets m, and wishes to conduct
strategic trade policy in each of these markets to improve overall domestic welfare. We
assume they follow the above estimation procedures for σ, and then implement the above
Hausman test based on significance levels of 0.01, 0.05, and 0.1 for rejection of the null hy-
pothesis. Note that for a policy maker to conduct this policy exercise, they need to decide

8While this object can be difficult to compute, we follow Cameron and Trivedi (2005) and compute it
using the bootstrap. Since our model involves a series of independent export markets, we randomly sample
export markets in our implementation, which implicitly clusters standard errors by market.
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on how to resolve situations where either both conduct modelsR are either rejected or not
rejected. Since strategic trade policy can lead to fairly large welfare loses when a policy
maker sets subsidies according to the wrong conduct model, we assume they conserva-
tively choose laissez faire (no tax or subsidy) whenever both conduct models are rejected
or not rejected according to this procedure.

5 Simulating strategic trade policy with unknown conduct

In this section, we carry out a series of simulations to investigate the effectiveness of
the policy-maker’s strategic trade policy based on our conduct-inference approach in the
extended third-market model. We assume that only one country c imposes a set of export
subsidies or taxes scm on its exporting firms. The first conduct-inference approach we
adopt is based on the Hausman test described in Section 4. Specifically, if the Hausman
test rejects the null hypothesis that the conduct is Cournot and fails to reject the null
hypothesis that the conduct is Bertrand, we infer that the conduct is Bertrand. If the
Hausman test rejects the null hypothesis that the conduct is Bertrand and fails to reject
the null hypothesis that the conduct is Cournot, we infer that the conduct is Cournot. If
the Hausman test fails to reject both null hypotheses or rejects both null hypotheses, we
cannot infer conduct.

The second approach is simply based on selecting the model whose estimate σ̂R is
closest to the demand IV estimate σ̂D; we call this the “nearest neighbor” approach. This
approach focuses attention our somewhat novel metric of model consistency, which treats
models with smaller values of

(
σ̂D − σ̂R

)2 as fitting the data “better.” Note, however, that
this approach runs the risk of potentially generating high welfare losses than the Hausman
test approach. In particular, the Hausman test may reject, or fail to reject, both models in
some settings due to uncertainty in the parameter estimates; in this case we assume the
policy maker does nothing, so consumers are no better or worse off. The nearest neighbor
approach instead always selects at least one of either Cournot or Bertrand, which runs a
greater risk of choosing the wrong policy than the Hausman approach. Since the nearest
neighbor policy is more interventionist than the Hausman test, we expect it it will tend to
generate more variable welfare gains than the more conservative Hausman testing proce-
dure; this naturally suggests that a policy maker’s risk aversion should likely determine
which policy regime is preferable in practice.

The simulations we focus on here are based on the extended third-market model with
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C = 2 production origins and N = 1 exporting firm in each production origin.9 The
data generating process is the same as Section 3.3 described in Appendix D and Table 1
summarizes the parameters chosen in the simulations. We assume that production origin
1 is the country that imposes export subsidies or taxes on its exporting firm.

Table 1: Parameters chosen in the simulations, C = 2, N = 1

variable value mean variance definition
Ym 1.0 1.0 Market size
ξicm 0.0 30.0 Demand shifter of importing goods
ξ0mm -3.0 1.0 Demand shifter of local goods
ωicm 0.0 0.5 Cost shifter of exporters
ω0mm 0.0 0.5 Cost shifter of local firms
ψcm 1.0 2.0 Trade cost shifter
σ 4.0 Elasticity

ρ(ξicm, ωicm) 0.5 Demand-cost correlation of importing goods
ρ(ξ0mm, ω0mm) 0.5 Demand-cost correlation of local goods

To evaluate the performance of the two conduct-inference approaches, we first check
the percentage of simulations where we correctly infer conduct. The results are shown in
Figure 5, where we plot the percent of correctly predicted markets using Hausman tests
with 1%, 5%, and 10% significance levels, as well as the nearest-neighbor approach. On
the x-axis, we vary the number of third markets to get a sense of how many independent
markets (effectively, our sample size) a policy maker must observe to correctly identify
the right conduct model. We find that conduct is easier to identify under the Bertrand
DGP, compared to the Cournot DGP. While we identify the correct mode of conduct a bit
under 100 % of the time when we consider 1000 independent markets for all three Haus-
man tests, the identification of Cournot conduct appears to be somewhat more sensitive
to sample size than Bertrand, with the % of times we correctly identify conduct immedi-
ately beginning to decline as we decrease the sample size. Since nearest neighbor still gets
100% of the simulations right here—i.e., our point estimates are still consistent with the
right model—this tells us this is purely a precision issue, leading our social planner to be-
have conservatively (choose laissez faire) when there is not sufficient evidence for them to
choose one model of the other. On the other hand, the proportion of simulations where we
can correctly identify Bertrand conduct under a Hausman test remains relatively constant

9Results for three rather than two countries are reported in in Appendix E. Qualitatively results are
similar, although the magnitude of the gains are smaller. It also becomes somewhat harder to identify
conduct under Bertrand competition when we observe more firms.
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until we start considering less than 500 export markets. After decreasing the number of
export markets even further—less than 200—nearest neighbor starts to occasionally rule
in favour of the wrong model, which is precisely when the conservativeness of a testing
procedure that accounts for uncertainty is likely to be most valuable.

Figure 5: Percent of correct inferred conduct, C = 2, N = 1

(a) Bertrand DGP (b) Cournot DGP

Note: The y-axis is the percentage of correct conduct inferences. The x-axis is the number of
third markets.Each line represents an inference approaches. The Hausman tests are conducted
with 1%, 5%, and 10% significance levels. The nearest neighbor approach selects the model
whose estimate σ̂R is closest to the demand IV estimate σ̂D.

In the next set of results, we turn to welfare properties of choosing strategic trade pol-
icy after inferring conduct. We assume that the policy-maker observes all equilibrium
prices, quantities, market shares and bilateral trade costs τc(i)m to estimate σ using both
demand IV and GMM approaches. If the policy-maker cannot infer conduct, the optimal
export subsidy or tax is set to zero. If the policy-maker can infer conduct, the optimal
export policy is solved for using the first-order condition of the social welfare function in
Equation (10) via fixed-point iterations. To compute the welfare change, we first solve for
the new equilibrium with estimated σ̂R, ξ̂ and ω̂ given the inferred conduct R. Specif-
ically, we refer to the methodogy described in Section 4.1 to obtain estimated ξ̂ and ω̂

given σ̂R and observed data. Given σ̂R, ξ̂, ω̂ and constant market size Ym, the new equi-
librium prices and quantities can be solved via fixed-point iteration, and the welfare at
new equilibrium is computed based on Equation (5).

Figure 6 shows the average welfare change under different conduct models and dif-
ferent numbers of observed third-markets. The solid brown lines represent the average
welfare change under the true conduct and the optimal export subsidy or tax that is com-
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puted based on the true σ and simulated ξ and ω. The other lines represent the average
welfare change under the inferred conduct and the optimal export subsidy or tax that is
computed based on the estimated σ̂R and estimated data. Given the high success rate
of nearest neighbor at identifying the correct mode of conduct documented in Figure 5,
we unsurprisingly find that the welfare gains implied by nearest neighbor in Figure 6
are close to what an omniscient social planner would obtain. The same is true for the
statistical Hausman tests when we observe many markets. However, these gains fall off
quickly as we decrease the sample size under the Cournot DGP. On the other hand, un-
der Bertrand, a social planner is able to generate average welfare gains close to 4% as
long as the number of third markets is above 500. Interestingly, even in cases where con-
duct is hard to identify, i.e. both DGPs with less than 100 markets, the Hausman test still
generates positive welfare gains.

The simulations suggest that our proposed metric of model misspecification—the dif-
ference between the demand only estimator and a demand-and-supply estimator—is
very good at identifying the correct model of conduct, even when the policy maker has ac-
cess to very little data. Simply choosing the model with the smallest value of

(
σ̂D − σ̂R

)2
as a model selection statistic appears to even outperform a formal Hausman test. That
said, forcing the social planner to always pick one model—as we do under the nearest
neighbor approach—does increase the risk of choosing the wrong model when estimates
are imprecise, which will tend to generate more variable welfare benefits than the more
conservative Hausman test. We illustrate this in Figure 7, which plots the standard devi-
ation of welfare changes across simulations. We see that the nearest neighbor approach
always generates a higher standard deviation in welfare than the Hausman test approach.
As a result, while the Hausman test tends to generate lower gains on average, there is also
less variability in the realized gains, which suggests that risk averse policy makers may
prefer the more conservative testing procedure in some cases; i.e. when the number of
markets is small.
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Figure 6: Average welfare change W−W0

W0
%, C = 2, N = 1

(a) Bertrand DGP (b) Cournot DGP

Note: The y-axis is the expected welfare change (in %). It is calculated as the average of W−W0

W0
%

over all cases in all simulations. If the policy-maker cannot infer the conduct, the optimal export
subsidy or tax is set to zero, and the welfare change is zero. The x-axis is the number of
third-markets. Each line represents a different approach to conduct inference. The Hausman
tests are conducted with 1%, 5%, and 10% significance levels. The nearest neighbor approach
selects the model whose estimate σ̂R is closest to the demand IV estimate σ̂D.

Figure 7: Standard deviation of welfare change W−W0

W0
%

(a) Bertrand DGP (b) Cournot DGP

Note: The y-axis is the standard deviation of the welfare change (in %). The x-axis is
the number of third-markets. If the policy-maker cannot infer the conduct, the
optimal export subsidy or tax is set to zero, and the welfare change is zero. Each line
represents a different approach to conduct inference. The Hausman tests are
conducted with 1%, 5%, and 10% significance levels. The nearest neighbor approach
selects the model whose estimate σ̂R is closest to the demand IV estimate σ̂D.
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6 Conclusion

In the 1980s concern over the dependence of optimal strategic trade policies on unobserv-
able conduct led to skepticism about whether governments would have the information
necessary to implement the optimal policies. That is even if we set aside concerns over re-
taliation and general equilibrium effects, it was natural to worry that a government that
mistook conduct as Cournot when in fact it was Bertrand would implement the exact
opposite policy of what would be optimal.

Our results here should not be seen as an argument for increased use of strategic trade
policy. There remain many valid concerns with such policies. However, our results sug-
gest that the natural response to not knowing conduct is to estimate it. We develop a
method to do that using a fairly standard toolkit from econometrics. Our Monte Carlo re-
sults (under ideal circumstances) suggest that implementing our method could give rise
to moderate welfare gains. A useful path for future work would be to implement the
method on real world industry data.
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Forlani, E., Martin, R., Mion, G., and Muûls, M. (2023). Unraveling firms: Demand,
productivity and markups heterogeneity. The Economic Journal, 133(654):2251–2302.

Gasmi, F., Laffont, J. J., and Vuong, Q. (1992). Econometric analysis of collusive behavior
in a soft-drink market. Journal of Economics & Management Strategy, 1(2):277–311.

Grossman, G. M. (1986). Strategic export promotion: a critique. In Krugman, P. R., editor,
Strategic trade policy and the new international economics, pages 47–68. MIT Press Cam-
bridge, MA.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estima-
tors. Econometrica: Journal of the econometric society, pages 1029–1054.

28



Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6):1251–1271.

Hottman, C. J., Redding, S. J., and Weinstein, D. E. (2016). Quantifying the sources of firm
heterogeneity. The Quarterly Journal of Economics, 131(3):1291–1364.

Iwata, G. (1974). Measurement of conjectural variations in oligopoly. Econometrica: Journal
of the Econometric Society, pages 947–966.

Jaumandreu, J. and Yin, H. (2018). Cost and product advantages: A firm-level model for
the chinese exports and industry growth. Working Paper.

Kugler, M. and Verhoogen, E. (2012). Prices, plant size, and product quality. The Review of
Economic Studies, 79(1):307–339.

Miller, N. H. and Weinberg, M. C. (2017). Understanding the price effects of the miller-
coors joint venture. Econometrica, 85(6):1763–1791.

Orr, S. (2022). Within-firm productivity dispersion: Estimates and implications. Journal of
Political Economy, 130(11):2771–2828.

Rosse, J. N. (1970). Estimating cost function parameters without using cost data: Illus-
trated methodology. Econometrica: Journal of the Econometric Society, pages 256–275.

29



A Derivation of optimal export subsidy/tax in extended third-

market model

A.1 Cournot

The revenue of firm i from country c in market m is

Ricm(Q) = picm(Q)qicm = Ym
(qicmAicm)

σ−1
σ

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

The profit of firm i from country c with export subsidy or tax is

πic(Q) =
∑
m

πicm(Q) =
∑
m

[Ricm(Q)− cicmqicm] +
∑
m ̸=c

scmqicm

=
∑
m

[
Ym

(qicmAicm)
σ−1
σ

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

− cicmqicm

]

+
∑
m̸=c

[
scmYm

(qicmAicm)
σ−1
σ

(q0mmξ0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

]

The profit of firm j from another country k is

πjk(Q) =
∑
m

πjkm(Q) =
∑
m

[Rjkm(Q)− cjkmqjkm]

=
∑
m

[
Ym

(qjkmAjkm)
σ−1
σ

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

− cjkmqjkm

]

The welfare of country c is

Wc(s) =
∑
i∈Ic

∑
m

πicm(Q)−
∑
i∈Ic

∑
m̸=c

scmpicm(Q)qicm

30



The own price elasticity of demand is

ϵCicm ≡ −
(
∂picm
∂qicm

qicm
picm

)−1

=

 1
σ
Ymq

− 1
σ
−1

icm A
σ−1
σ

icm

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′∈Ωc′m
(qi′c′mAi′c′m)

σ−1
σ

+
σ−1
σ
Ymq

− 2
σ

icmA
2σ−2

σ
icm(

(q0mmξ0mm)
σ−1
σ +

∑
c′
∑

i′∈Ωc′m
(qi′c′mAi′c′m)

σ−1
σ

)2
 qicm
picm


−1

=

(
1

σ
+
σ − 1

σ
Sicm(pm, ξm)

)−1

=
σ

1 + (σ − 1)Sicm(pm, ξm)

A.1.1 Second stage (given scm):

First-order conditions

The first-order condition of firm i from country c in market m ̸= c is

∂πicm(Q)

∂qicm
= (1 + scm)qicm

∂picm(Q)

∂qicm
+ (1 + scm)picm(Q)− cicm

= (1 + scm)Ym
σ − 1

σ

(qicmAicm)
σ−1
σ

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

1

qicm

− (1 + scm)Ym
σ − 1

σ

(qicmAicm)
σ−1
σ(

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

)2
(qicmAicm)

σ−1
σ

1

qicm
− cicm

= (1 + scm)Ym
σ − 1

σ

(qicmAicm)
σ−1
σ

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

1

qicm

1−
(qicmAicm)

σ−1
σ

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ


− cicm

= (1 + scm)
σ − 1

σ
picm(1− Sicm)− cicm = 0

(15)
where Sicm is the market share of firm i from country c in market m. Similarly, the first-
order condition of firm i from country c in market c is

∂πicc(Q)

∂qicc
= qicc

∂picc(Q)

∂qicc
+ picc(Q)− cicc =

σ − 1

σ
picc(1− Sicc)− cicc = 0 (16)

The first-order condition of firm j from another country k ̸= c in any marketm (including
local firms in market m) is

∂πjkm(Q)

∂qjkm
= qjkm

∂pjkm(Q)

∂qjkm
+ pjkm(Q)− cjkm =

σ − 1

σ
pjkm(1− Sjkm)− cjkm = 0 (17)
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Second-order conditions

∂2πicm(Q)

∂q2icm
= 2(1 + scm)

∂picm(Q)

∂qicm
+ (1 + scm)qicm

∂2picm(Q)

∂q2icm
< 0 (18)

∂2πicc(Q)

∂q2icc
= 2

∂picc(Q)

∂qicc
+ qicc

∂2picc(Q)

∂q2icc
< 0 (19)

∂2πjkm(Q)

∂q2jkm
= 2

∂pjkm(Q)

∂qjkm
+ qjkm

∂2pjkm(Q)

∂q2jkm
< 0 (20)

Take ∂2πicm(Q)

∂q2icm
as an example (We can apply a similar derivation to the other two partial

derivatives to show SOC always hold for them as well). As 1 + scm > 0, sign of ∂2πicm(Q)

∂q2icm

is the same as the sign of 2∂picm(Q)
∂qicm

+ qicm
∂2picm(Q)

∂q2icm
.

2
∂picm(Q)

∂qicm
+ qicm

∂2picm(Q)

∂q2icm

= 2

−
1

σ

Ymq
− 1+σ

σ
icm A

σ−1
σ

icm

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

1

qicm
−
σ − 1

σ

Ymq
− 2

σ
icmA

2σ−2
σ

icm(
(q0mmA0mm)

σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

)2



+ qicm

1 + σ

σ2

Ymq
− 1+2σ

σ
icm A

σ−1
σ

icm

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

1

qicm
+
σ − 1

σ2

Ymq
− 2+σ

σ
icm A

2σ−2
σ

icm(
(q0mmA0mm)

σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

)2



+ qicm

2σ − 2

σ2

Ymq
− 2+σ

σ
icm A

2σ−2
σ

icm(
(q0mmA0mm)

σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

)2
+

2(σ − 1)2

σ2

Ymq
− 3

σ
icmA

3σ−3
σ

icm(
(q0mmA0mm)

σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

)3


=

1− σ

σ2

Ymq
− 1+σ

σ
icm A

σ−1
σ

icm

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

+
(3− 2σ)(σ − 1)

σ2

Ymq
− 2

σ
icmA

2σ−2
σ

icm(
(q0mmA0mm)

σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

)2

+
2(σ − 1)2

σ2

Ymq
1− 3

σ
icm A

3σ−3
σ

icm(
(q0mmA0mm)

σ−1
σ +

∑
c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

)3

=
Ym

q2icm

(
1− σ

σ2
Sicm +

(3− 2σ)(σ − 1)

σ2
S2
icm +

2(σ − 1)2

σ2
S3
icm

)
(21)

Define f(Sicm) = 1−σ
σ2 Sicm+ (3−2σ)(σ−1)

σ2 S2
icm+ 2(σ−1)2

σ2 S3
icm, then sign[∂

2πic(Q)

∂q2icm
] = sign[f(Sicm)]

f ′(Sicm) =
1− σ

σ2
+

2(3− 2σ)(σ − 1)

σ2
Sicm +

3 · 2(σ − 1)2

σ2
S2
icm

It is easy to show that f ′(Sicm) is a convex function with maximum value achieving at
either Sicm = 0 or Sicm = 1, given that Sicm ∈ (0, 1) and σ > 1. f ′(0) = 1−σ

σ
< 0 and

f ′(1) = 2σ2−3σ+1
σ2 > 0. Therefore, f(Sicm) first decreases and then increases on (0, 1), with

maximum value achieved at either Sicm = 0 or Sicm = 1. Since f(0) = 0 and f(1) =
1−σ+(3−2σ)(σ−1)+2(σ−1)2

σ2 = 0, we have sign[∂
2πic(Q)

∂q2icm
] = sign[f(Sicm)] < 0.
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Strategic substitutes or complementarity

∂2πicm(Q)

∂qjkm∂qicm
= (1 + scm)

∂picm(Q)

∂qjkm

+ (1 + scm)qicm
∂2picm(Q)

∂qjkm∂qicm

= −(1 + scm)
σ − 1

σ

Ymq
− 1

σ
icmA

σ−1
σ

icm q
− 1

σ
jkm

A
σ−1
σ

jkm

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′
(
qi′c′mAi′c′m

)σ−1
σ

+ (1 + scm)qicm

σ − 1

σ2

Ymq
− 1+σ

σ
icm A

σ−1
σ

icm q
− 1

σ
jkm

A
σ−1
σ

jkm

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′
(
qi′c′mAi′c′m

)σ−1
σ

+

(
σ − 1

σ

)2 2Ymq
− 2

σ
icmA

2σ−2
σ

icm q
− 1

σ
jkm

A
σ−1
σ

jkm

(q0mmA0mm)
σ−1
σ +

(∑
c′
∑

i′
(
qi′c′mAi′c′m

)σ−1
σ

)3



= −(1 + scm)

(
σ − 1

σ

)2 Ymq
σ−1
σ

icm A
σ−1
σ

icm q
σ−1
σ

jkm
A

σ−1
σ

jkm(
(q0mmA0mm)

σ−1
σ +

∑
c′
∑

i′
(
qi′c′mAi′c′m

)σ−1
σ

)2

1

qicmqjkm

1 − 2
(qicmAicm)

σ−1
σ

(q0mmA0mm)
σ−1
σ +

∑
c′
∑

i′
(
qi′c′mAi′c′m

)σ−1
σ



= −(1 + scm)

(
σ − 1

σ

)2 1

Ym
picmpjkm(1 − 2Sicm)

(22)

∂2πicm(Q)
∂qjkm∂qicm

< 0 if Sicm = (qicmAicm)
σ−1
σ∑

c′
∑

i′ (qi′c′mAi′c′m)
σ−1
σ

< 0.5.

Total differentiation of FOC

∂2πicm(Q)

∂q2icm
dqicm+

∑
i′∈Ic,i′ ̸=i

∂2πicm(Q)

∂qi′cm∂qicm
dqi′cm+

∑
c′ ̸=c

∑
i′∈Ic′

∂2πicm(Q)

∂qi′c′m∂qicm
dqi′c′m+

∂2πicm(Q)

∂q0mm∂qicm
dq0mm+

∂2πicm(Q)

∂scm∂qicm
dscm = 0, ∀m ̸= c

∂2πicc(Q)

∂q2icc
dqicc +

∑
i′∈Ic,i′ ̸=i

∂2πicc(Q)

∂qi′cc∂qicc
dqi′cc +

∑
c′ ̸=c

∑
i′∈Ic′

∂2πicc(Q)

∂qi′c′c∂qicc
dqi′c′c +

∂2πicc(Q)

∂q0cc∂qicc
dq0cc = 0

∂2πjkm(Q)

∂q2jkm
dqjkm+

∑
i′∈Ic,i′ ̸=i

∂2πjkm(Q)

∂qi′cm∂qjkm
dqi′cm+

∑
c′ ̸=c

∑
i′∈Ic′

∂2πjkm(Q)

∂qi′c′m∂qjkm
dqi′c′m+

∂2πjkm(Q)

∂q0mm∂qjkm
dq0mm+

∂2πjkm(Q)

∂scm∂qjkm
dscm = 0, ∀m, k ̸= c

For a given market m ̸= c, there are N∗
m = 1 +

∑C
c=1Nc equations. In matrix form, the

system of equations is



∂2π11m(Q)

∂q211m
. . .

∂2π11m(Q)
∂qNCCm∂q11m

∂2π11m(Q)
∂q0mm∂q11m

...
. . .

...
...

∂2π1cm(Q)
∂q11m∂q1cm

. . .
∂2π1cm(Q)

∂qNCCm∂q1cm

∂2π1cm(Q)
∂q0mm∂q1cm

...
. . .

...
...

∂2πNccm(Q)

∂q11m∂qNccm
. . .

∂2πNccm(Q)

∂qNCCm∂qNccm

∂2πNccm(Q)

∂q0mm∂qNccm

...
. . .

...
...

∂2πNCCm(Q)

∂q11m∂qNCCm
. . .

∂2πNCCm(Q)

∂q2
NCCm

∂2πNCCm(Q)

∂q0mm∂qNCCm

∂2π0mm(Q)
∂q11m∂q0mm

. . .
∂2π0mm(Q)

∂qNCCm∂q0mm

∂2π0mm(Q)

∂q20mm





dq11m/ dscm
...

dq1cm/ dscm
...

dqNccm/dscm
...

dqNCCm/ dscm

dq0mm/dscm



=



− ∂2π11m(Q)
∂scm∂q11m

...

− ∂2π1cm(Q)
∂scm∂q1cm

...

− ∂2πNccm(Q)

∂scm∂qNccm

...

−
∂2πNCCm(Q)

∂scm∂qNCCm

− ∂2π0mm(Q)
∂scm∂q0mm



=



0

...
−σ−1

σ
picm(1− Sicm)

...
−σ−1

σ
picm(1− Sicm)

...
0

0


(23)
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Denote M =



∂2π11m(Q)

∂q211m
. . . ∂2π11m(Q)

∂qNCCm∂q11m

∂2π11m(Q)
∂q0mm∂q11m

... . . . ...
...

∂2π1cm(Q)
∂q11m∂q1cm

. . . ∂2π1cm(Q)
∂qNCCm∂q1cm

∂2π1cm(Q)
∂q0mm∂q1cm

... . . . ...
...

∂2πNccm(Q)

∂q11m∂qNccm
. . .

∂2πNccm(Q)

∂qNCCm∂qNccm

∂2πNccm(Q)

∂q0mm∂qNccm

... . . . ...
...

∂2πNCCm(Q)

∂q11m∂qNCCm
. . .

∂2πNCCm(Q)

∂q2NCCm

∂2πNCCm(Q)

∂q0mm∂qNCCm

∂2π0mm(Q)
∂q11m∂q0mm

. . . ∂2π0mm(Q)
∂qNCCm∂q0mm

∂2π0mm(Q)

∂q20mm



. Adopting the Cramer’s

rule,

dqjkm/ dscm =
det(Mjk)

det(M)

whereMjk is the matrixM with the [j+
∑k−1

c=1 Nc]th column replaced by the column vector

0
...

−σ−1
σ
p1cm(1− S1cm)

...
−σ−1

σ
pNccm(1− SNccm)

...
0

0


.

Applying the determinant formula and dropping the zero terms,10

det(Mjk) = −
Nc∑
i=1

(−1)i+
∑c−1

l=1 Nl+j+
∑k−1

n=1Nn
∂2πicm(Q⃗)

∂scm∂qicm
det(M∗

jk,ic)

=
Nc∑
i=1

(−1)i+
∑c−1

l=1 Nl+j+
∑k−1

n=1Nn
σ − 1

σ
picm(1− Sicm) det(M

∗
jk,ic)

where M∗
jk,ic is the matrix Mjk with the [i +

∑c−1
l=1 Nl]th row and [j +

∑k−1
n=1Nn]th column

removed.

10M =



a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n

...
...

. . .
...

. . .
...

ai1 ai2 . . . aij . . . ain
...

...
. . .

...
. . .

...
an1 an2 . . . anj . . . ann


, then det(M) =

∑n
i=1(−1)i+jaij det(Mij), where Mij is the

matrix M with the ith row and jth column removed.
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Similarly,

dq0mm/ dscm =
det(MN∗

mN
∗
m
)

det(M)

where MN∗
mN

∗
m

is the matrix M with the last column replaced by the column vector



0
...

−1
...

−1
...
0

0


.

det(MN∗
mN

∗
m
) =

Nc∑
i=1

(−1)i+
∑c−1

l=1 Nl+1+
∑C

n=1Nn det(M∗
N∗

mN
∗
m,ic

)

whereM∗
N∗

mN
∗
m,ic

is the matrixMN∗
mN

∗
m

with the [i+
∑c−1

l=1 Nl]th row and [N∗
m]th (last) column

removed.

A.1.2 First stage (given dqjkm
dscm

for ∀k,m, j ∈ Ik, and dq0mm

dscm
):

Focus on the welfare of country c gained from market m ̸= c,

Wc(scm) =
∑
i∈Ic

πicm(Q)− scm
∑
i∈Ic

picm(Q)qicm

dWc(scm)

dscm
=
∑
i∈Ic

dπicm(Q)

dscm
−
∑
i∈Ic

picm(Q)qicm − scm
∑
i∈Ic

(
qicm

dpicm
dscm

+ picm
dqicm
dscm

)
=
∑
i∈Ic

∂πicm(Q)

∂qicm

dqicm
dscm

+
∑
i∈Ic

∑
k ̸=c

∑
j∈Ik

∂πicm(Q)

∂qjkm

dqjkm
dscm

+
∑
i∈Ic

∑
j ̸=i

∂πicm(Q)

∂qjcm

dqjcm
dscm

+
∑
i∈Ic

∂πicm(Q)

∂q0mm

dq0mm
dscm

− scm
∑
i∈Ic

(
picm

dqicm
dscm

+ qicm
∑
k

∑
j∈Ik

(
∂picm
∂qjkm

dqjkm
dscm

+
∂picm
∂q0mm

dq0mm
dscm

))
= 0

(24)
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Optimal sCcm is solved as

sCcm =

∑
i∈Ic

∂πicm(Q)
∂q0mm

dq0mm

dscm
+
∑

i∈Ic
∑

j ̸=i
∂πicm(Q)
∂qjcm

dqjcm
dscm

+
∑

i∈Ic
∑

k ̸=c
∑

j∈Ik
∂πicm(Q)
∂qjkm

dqjkm
dscm∑

i∈Ic

(
picm

dqicm
dscm

+ qicm
∑

k

∑
j∈Ik

(
∂picm
∂qjkm

dqjkm
dscm

+ ∂picm
∂q0mm

dq0mm

dscm

))
(25)

A.2 Bertrand

The revenue of firm i from country c in market m is

Ricm(P) = picmqicm = Ym
p1−σicmA

σ−1
icm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′

(
pi′c′m
Ai′c′m

)1−σ
The profit of firm i from country c with export subsidy is

πic(P) =
∑
m

[Ricm(P)− cicmqicm] +
∑
m̸=c

scmpicmqicm

=
∑
m

Ym p1−σicmA
σ−1
icm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′

(
pi′c′m
Ai′c′m

)1−σ − cicmYm
p−σicmA

σ−1
icm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′

(
pi′c′m
Ai′c′m

)1−σ


+
∑
m̸=c

scmYm p1−σicmA
σ−1
icm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′

(
pi′c′m
Ai′c′m

)1−σ − cicmYm
p−σicmA

σ−1
icm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′

(
pi′c′m
Ai′c′m

)1−σ


The profit of firm j from another country k is

πjk(P) =
∑
m

[Rjkm(P)− cjkmqjkm]

=
∑
m

Ym p1−σjkmA
σ−1
jkm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′

(
pi′c′m
Ai′c′m

)1−σ − cjkmYm
p−σjkmA

σ−1
jkm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′

(
pi′c′m
Ai′c′m

)1−σ


The welfare of country c is

Wc(s) =
∑
i∈Ic

∑
m

πicm(P)−
∑
i∈Ic

∑
m̸=c

scmYm
p−σicmA

σ−1
icm(

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′

(
pi′c′m
Ai′c′m

)1−σ
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The own price elasticity of demand is

ϵBicm ≡ −
(
∂qicm
∂picm

picm
qicm

)
= −

σYm p−σ−1
icm Aσ−1

icm(
p0mm

A0mm

)1−σ
+
∑

c′
∑

i′∈Ωc′m

(
pi′c′m
Ai′c′m

)1−σ

+ (1− σ)Ym
p−2σ
icmA

2σ−2
icm((

p0mm

A0mm

)1−σ
+
∑

c′
∑

i′∈Ωc′m

(
pi′c′m
Ai′c′m

)1−σ)2

 picm
qicm

= σ + (1− σ)Sicm(pm, ξm)

A.2.1 Second stage (given scm):

First-order conditions

The first-order condition of firm i from country c in market m ̸= c is

∂πicm(P)

∂picm
= (1 + scm)qicm + (1 + scm)picm

∂qicm(P)

∂picm
− cicm

∂qicm(P)

∂picm

= (1 + scm)Ym
p−σ
icmAσ−1

icm(
p0mm
A0mm

)1−σ
+
∑

c′
∑

i′

(
p
i′c′m

A
i′c′m

)1−σ

− ((1 + scm)picm − cicm)

σYm
p−σ−1
icm Aσ−1

icm(
p0mm
A0mm

)1−σ
+
∑

c′
∑

i′

(
p
i′c′m

A
i′c′m

)1−σ
+ (1 − σ)Ym

p−2σ
icm A2σ−2

icm((
p0mm
A0mm

)1−σ
+
∑

c′
∑

i′

(
p
i′c′m

A
i′c′m

)1−σ
)2



= (1 + scm)Ym
p−σ
icmAσ−1

icm(
p0mm
A0mm

)1−σ
+
∑

c′
∑

i′

(
p
i′c′m

A
i′c′m

)1−σ

1 −
(1 + scm)picm − cicm

(1 + scm)picm

σ + (1 − σ)
p1−σ
icm Aσ−1

icm(
p0mm
A0mm

)1−σ
+
∑

c′
∑

i′

(
p
i′c′m

A
i′c′m

)1−σ




= (1 + scm)YmSicm
1

picm

(
1 −

(1 + scm)picm − cicm

(1 + scm)picm
(σ + (1 − σ)Sicm)

)
= 0

(26)
Similarly, the first-order condition of firm i from country c in market c is

∂πicc(Q)

∂picc
= YmSicc

1

picc

(
1−

picc − cicc

picc
(σ + (1− σ)Sicc)

)
= 0 (27)

The first-order condition of firm j from another country k ̸= c in any marketm (including
local firms in market m) is

∂πjkm(Q)

∂pjkm
= YmSjkm

1

pjkm

(
1− pjkm − cjkm

pjkm
(σ + (1− σ)Sjkm)

)
= 0 (28)
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Second-order conditions

∂2πicm(P)

∂p2icm
= 2(1 + scm)

∂qicm(P)

∂picm
+ (1 + scm)picm

∂2qicm(P)

∂p2icm
− cicm

∂2qicm(P)

∂p2icm
< 0 (29)

∂2πicc(P)

∂p2icc
= 2

∂qicc(P)

∂picc
+ picc

∂2qicc(P)

∂p2icc
− cicc

∂2qicc(P)

∂p2icc
< 0 (30)

∂2πjkm(P)

∂p2jkm
= 2

∂qjkm(P)

∂pjkm
+ pjkm

∂2qjkm(P)

∂p2jkm
− cjkm

∂2qjkm(P)

∂p2jkm
< 0 (31)

Take ∂2πicm(Q)

∂p2icm
as an example.

∂2πicm(P)

∂p2icm
= 2(1 + scm)

∂qicm(P)

∂picm
+ (1 + scm)picm

∂2qicm(P)

∂p2icm
− cicm

∂2qicm(P)

∂p2icm

= −2(1 + scm)YmSicm
1

p2icm
(σ + (1− σ)Sicm)

+ ((1 + scm)picm − cicm)Ym
1

p3icm

(
σ(1 + σ)Sicm + 3σ(1− σ)S2

icm + 2(1− σ)2S3
icm

)
(32)

∂2πicm(Q)

∂p2icm
< 0 iff

2(1 + scm)picm
(1 + scm)picm − cicm

>
σ(σ + 1) + 3σ(1− σ)Sicm + 2(σ − 1)2S2

icm

σ + (1− σ)Sicm

= 2(1− σ)Sicm + σ +
σ

σ + (1− σ)Sicm

Plug in FOC, 1− (1+scm)picm−cicm
(1+scm)picm

(σ + (1− σ)Sicm) = 0, then ∂2πicm(Q)

∂p2icm
< 0 iff

2σ + 2(1− σ)Sicm > 2(1− σ)Sicm + σ +
σ

σ + (1− σ)Sicm

σ >
σ

σ + (1− σ)Sicm

σ + (1− σ)Sicm = (1− Sicm)σ + Sicm > 1

Since 1−Sicm > 0, σ > 1, we have (1−Sicm)σ+Sicm > (1−Sicm)×1+Sicm = 1. Therefore,
∂2πicm(Q)

∂p2icm
< 0 is always satisfied.
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Strategic complements (given FOC)

∂2πicm(P)

∂pjkm∂picm
= (1 + scm)

∂qicm(P)

∂pjkm
+ (1 + scm)picm

∂2qicm(P)

∂pjkm∂picm
− cicm

∂2qicm(P)

∂pjkm∂picm

= −(1 + scm)(1− σ)YmSicmSjkm
1

picmpjkm

(
1− picm − cicm + scm

picm
(σ + (1− σ)Sicm)

)
+ (1 + scm)(1− σ)2Ym

picm − cicm + scm
picm

S2
icmSjkm

1

picmpjkm

= (1− σ)2Ym
picm − cicm + scm

picm
S2
icmSjkm

1

picmpjkm
> 0

(33)

Total differentiation of FOC

∂2πic(P)

∂p2icm
dpicm+

∑
i′∈Ic,i′ ̸=i

∂2πic(P)

∂pi′cm∂picm
dpi′cm+

∑
c′ ̸=c

∑
i′∈Ic′

∂2πic(P)

∂pi′c′m∂picm
dpi′c′m+

∂2πic(P)

∂p0mm∂picm
dp0mm+

∂2πic(P)

∂sc∂picm
dscm = 0, ∀m ̸= c

∂2πic(P)

∂p2icc
dpicc +

∑
i′∈Ic,i′ ̸=i

∂2πic(P)

∂pi′cc∂picc
dpi′cc +

∑
c′ ̸=c

∑
i′∈Ic′

∂2πic(P)

∂pi′c′c∂picc
dpi′c′c +

∂2πic(P)

∂p0cc∂picc
dp0cc = 0

∂2πjk(P)

∂p2jkm
dpjkm+

∑
i′∈Ic,i′ ̸=i

∂2πjk(P)

∂pi′cm∂pjkm
dpi′cm+

∑
c′ ̸=c

∑
i′∈Ic′

∂2πjk(P)

∂pi′c′m∂pjkm
dpi′c′m+

∂2πjk(P)

∂p0mm∂pjkm
dp0mm+

∂2πjk(P)

∂sc∂pjkm
dscm = 0, ∀m, k ̸= c

For a given market m ̸= c, there are N∗
m = 1 +

∑C
c=1Nc equations. In matrix form, the

system of equations is



∂2π11m(P)

∂p211m
. . .

∂2π11m(P)
∂pNCCm∂p11m

∂2π11m(P)
∂p0mm∂p11m

...
. . .

...
...

∂2π1cm(P)
∂p11m∂p1cm

. . .
∂2π1cm(P)

∂pNCCm∂p1cm

∂2π1cm(P)
∂p0mm∂p1cm

...
. . .

...
...

∂2πNccm(P)

∂p11m∂pNccm
. . .

∂2πNccm(P)

∂pNCCm∂pNccm

∂2πNccm(P)

∂p0mm∂pNccm

...
. . .

...
...

∂2πNCCm(P)

∂p11m∂pNCCm
. . .

∂2πNCCm(P)

∂p2
NCCm

∂2πNCCm(P)

∂p0mm∂pNCCm

∂2π0mm(P)
∂p11m∂p0mm

. . .
∂2π0mm(P)

∂pNCCm∂p0mm

∂2π0mm(P)

∂p20mm





dp11m
dscm

...
dp1cm
dscm

...
dpNccm

dscm
...

dpNCCm

dscm
dp0mm
dscm



=



− ∂2π11m(Q)
∂scm∂p11m

...

− ∂2π1cm(Q)
∂scm∂p1cm

...

− ∂2πNccm(Q)

∂scm∂pNccm

...

−
∂2πNCCm(Q)

∂scm∂pNCCm

− ∂2π0mm(Q)
∂scm∂p0mm



=



0

...
−YmRS1cm

1
p1cm

(1− σ)(1−RS1cm)

...
−YmRSNccm

1
pNccm

(1− σ)(1−RSNccm)

...
0

0


(34)
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Denote M =



∂2π11m(P)

∂p211m
. . . ∂2π11m(P)

∂pNCCm∂p11m

∂2π11m(P)
∂p0mm∂p11m

... . . . ...
...

∂2π1cm(P)
∂p11m∂p1cm

. . . ∂2π1cm(P)
∂pNCCm∂p1cm

∂2π1cm(P)
∂p0mm∂p1cm

... . . . ...
...

∂2πNccm(P)

∂p11m∂pNccm
. . .

∂2πNccm(P)

∂pNCCm∂pNccm

∂2πNccm(P)

∂p0mm∂pNccm

... . . . ...
...

∂2πNCCm(P)

∂p11m∂pNCCm
. . .

∂2πNCCm(P)

∂p2NCCm

∂2πNCCm(P)

∂p0mm∂pNCCm

∂2π0mm(P)
∂p11m∂p0mm

. . . ∂2π0mm(P)
∂pNCCm∂p0mm

∂2π0mm(P)

∂p20mm



, then the solution is

dpjkm/ dscm =
det(Mjk)

det(M)

whereMjk is the matrixM with the [j+
∑k−1

c=1 Nc]th column replaced by the column vector

0

.

.

.
−YmRS1cm

1
p1cm

(1 − σ)(1 − RS1cm)

.

.

.
−YmRSNccm

1
pNccm

(1 − σ)(1 − RSNccm)

.

.

.
0

0



.

Applying the determinant formula and dropping the zero terms,

det(Mjk) = −
Nc∑
i=1

(−1)i+
∑c−1

l=1 Nl+j+
∑k−1

n=1Nn
∂2πicm(Q)

∂scm∂picm
det(M∗

jk,ic)

=
Nc∑
i=1

(−1)i+
∑c−1

l=1 Nl+j+
∑k−1

n=1NnYmSicm
1

picm
(1− σ)(1− Sicm) det(M

∗
jk,ic)

where M∗
jk,ic is the matrix Mjk with the [i +

∑c−1
l=1 Nl]th row and [j +

∑k−1
n=1Nn]th column

removed.
Similarly,

dp0mm/ dscm =
det(MN∗

mN
∗
m
)

det(M)

det(MN∗
mN

∗
m
) =

Nc∑
i=1

(−1)i+
∑c−1

l=1 Nl+1+
∑C

n=1Nn
∂2πicm(Q)

∂scm∂picm
det(M∗

N∗
mN

∗
m,ic

)

=

Nc∑
i=1

(−1)i+
∑c−1

l=1 Nl+1+
∑C

n=1NnYmSicm
1

picm
(1− σ)(1− Sicm) det(M

∗
N∗

mN
∗
m,ic

)
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where M∗
N∗

mN
∗
m,ic

is the matrix MN∗
mN

∗
m

with the [i +
∑c−1

l=1 Nl]th row and [N∗
m]th (last) col-

umn removed.

A.2.2 First stage (given dpjkm
dscm

for ∀k,m, j ∈ Ik, and dp0mm

dscm
):

dWc(scm)

dsc
=
∑
i∈Ic

dπicm(P)

dsc
−
∑
i∈Ic

picmqicm(P)− scm
∑
i∈Ic

(
picm

dqicm
dscm

+ qicm
dpicm
dscm

)
=
∑
i∈Ic

∂πicm(P)

∂picm

dpicm
dscm

+
∑
i∈Ic

∑
k ̸=c

∑
j∈Ik

∂πicm(P)

∂pjkm

dpjkm
dscm

+
∑
i∈Ic

∑
j ̸=c

∂πicm(P)

∂pjcm

dpjcm
dscm

+
∑
i∈Ic

∂πicm(P)

∂p0mm

dp0mm
dscm

− scm
∑
i∈Ic

(
qicm

dpicm
dscm

+ picm
∑
k

∑
j∈Ik

(
∂qicm
∂pjkm

dpjkm
dscm

+
∂qicm
∂p0mm

dp0mm
dscm

))
= 0

(35)
Optimal sBcm is solved as

sBcm =

∑
i∈Ic

∂πicm(P)
∂p0mm

dp0mm

dscm
+
∑

i∈Ic
∑

j ̸=c
∂πicm(P)
∂pjcm

dpjcm
dscm

+
∑

i∈Ic
∑

k ̸=c
∑

j∈Ik
∂πicm(P)
∂pjkm

dpjkm
dscm∑

i∈Ic

(
qicm

dpicm
dscm

+ picm
∑

k

∑
j∈Ik

(
∂qicm
∂pjkm

dpjkm
dscm

+ ∂qicm
∂p0mm

dp0mm

dscm

))
(36)

B Derivation of optimal export subsidy/tax in two-firm third-

market model

Continuing from Appendix A, this section discusses optimal export subsidy/tax in the
two-firm third-market model.

B.1 Cournot Duopoly

Equation (23) is simplified as[
πxx πxy

π∗
yx π∗

yy

][
dx/ ds

dy/ ds

]
=

[
−πxs
−π∗

ys

]
=

[
−σ−1

σ
p(1−Rx)

0

]
(37)
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Applying Cramer’s rule,

dx

ds
= −σ − 1

σ
p(1−Rx)

π∗
yy

πxxπ∗
yy − πxyπ∗

yx

(38)

dy

ds
=
σ − 1

σ
p(1−Rx)

π∗
yx

πxxπ∗
yy − πxyπ∗

yx

(39)

In the first stage,

dW

ds
= πx

dx

ds
+πy

dy

ds
+πs−x−sp

dx

ds
−sxpx

dx

ds
−sxpy

dy

ds
= πy

dy

ds
−spdx

ds
−sxpx

dx

ds
−sxpy

dy

ds
= 0

Optimal sC is solved as

sC = −πy
π∗
yx

pπ∗
yy + xpxπ∗

yy − xpyπ∗
yx

(40)

pπ∗
yy + xpxπ

∗
yy − xpyπ

∗
yx ⇔

MRx

x

M

y2

(
1− σ

σ2
Ry +

(3− 2σ)(σ − 1)

σ2
R2

y +
2(σ − 1)2

σ2
R3

y

)
− x

(
M

σx2
Rx +

σ − 1

σ

M

x2
R2

x

)(
1− σ

σ2
Ry +

(3− 2σ)(σ − 1)

σ2
R2

y +
2(σ − 1)2

σ2
R3

y

)
−
σ − 1

σ
Rxp

∗
(
σ − 1

σ

)2 1

M
pp∗ (1− 2Ry)

⇔
(σ − 1)(1−Ry) + 1

σ(1−Ry)

1

R2
y

(
1− σ

σ2
Ry +

(3− 2σ)(σ − 1)

σ2
R2

y +
2(σ − 1)2

σ2
R3

y

)

−
(
σ − 1

σ

)3

(1−Ry)(1− 2Ry)

≡ h(Ry)

Easy to show h(Ry) < 0 for all Ry ∈ (0, 1) and σ > 1. Thus pπ∗
yy + xpxπ

∗
yy − xpyπ

∗
yx < 0.

Given that πy < 0 and pπ∗
yy + xpxπ

∗
yy − xpyπ

∗
yx < 0, we have

sign[sC ] = −sign[π∗
yx]

π∗
yx < 0 iff Ry < 0.5. Therefore, sC > 0 iff Ry < 0.5.

B.2 Bertrand Duopoly

Equation (34) is simplified as[
πpp πpp∗

π∗
p∗p π∗

p∗p∗

][
dp/ ds

dp∗/ ds

]
=

[
−πps
−π∗

p∗s

]
=

[
x(σ − 1)(1−Rx)

0

]
(41)
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Applying Cramer’s rule,
dp

ds
=
x(σ − 1)(1−Rx)π

∗
p∗p∗

πppπ∗
p∗p∗ − πpp∗π∗

p∗p

(42)

dp∗

ds
= −

x(σ − 1)(1−Rx)π
∗
p∗p

πppπ∗
p∗p∗ − πpp∗π∗

p∗p

(43)

In the first stage, Optimal sB is solved as

sB =
πp∗

dp∗

ds

pxp
dp
ds

+ pxp∗
dp∗

ds
+ xdp

ds

= −
πp∗π

∗
p∗p

pxpπ∗
yy + xπ∗

yy − pxp∗π∗
yx

pxpπ
∗
p∗p∗ + xπ

∗
p∗p∗ − pxp∗π

∗
p∗p ⇔ −MRx

1

p
(σ + (1 − σ)Rx)

(
−2MRy

1

(p∗)2
(σ + (1 − σ)Ry) + (p

∗ − c
∗
)M

1

(p∗)3

(
σ(σ + 1)Ry + 3σ(1 − σ)R

2
y + 2(1 − σ)

2
R

3
y

))

− (σ − 1)MRxRy
1

p∗
(1 − σ)

2
M

p∗ − c∗

p∗
R

2
yRx

1

pp∗

− 2MRxMRy
1

p(p∗)2
(σ + (1 − σ)Ry) + (p

∗ − c
∗
)M

2
Rx

1

p(p∗)3

(
σ(σ + 1)Ry + 3σ(1 − σ)R

2
y + 2(1 − σ)

2
R

3
y

)
⇔ (σ + (1 − σ)Rx)

(
2(σ + (1 − σ)Ry) − (p

∗ − c
∗
)

1

p∗

(
σ(σ + 1) + 3σ(1 − σ)Ry + 2(1 − σ)

2
R

2
y

))
− (σ − 1)

3 p∗ − c∗

p∗
R

2
yRx

− 2(σ + (1 − σ)Ry) + (p
∗ − c

∗
)

1

p∗

(
σ(σ + 1) + 3σ(1 − σ)Ry + 2(1 − σ)

2
R

2
y

)
⇔ (σ + (1 − σ)Rx − 1)

(
2(σ + (1 − σ)Ry) −

1

σ + (1 − σ)Ry

(
σ(σ + 1) + 3σ(1 − σ)Ry + 2(1 − σ)

2
R

2
y

))

− (σ − 1)
3 1

σ + (1 − σ)Ry
R

2
yRx

⇔ (σ + (1 − σ)Rx − 1)

(
2(σ + (1 − σ)(1 − Rx)) −

1

σ + (1 − σ)(1 − Rx)

(
σ(σ + 1) + 3σ(1 − σ)(1 − Rx) + 2(1 − σ)

2
(1 − Rx)

2
))

− (σ − 1)
3 1

σ + (1 − σ)(1 − Rx)
(1 − Rx)

2
Rx

Therefore,

sign
[
pxpπ

∗
p∗p∗ + xπ

∗
p∗p∗ − pxp∗π

∗
p∗p

]
= sign

[
(σ + (1 − σ)Rx − 1)

(
2(σ + (1 − σ)Ry) −

1

σ + (1 − σ)Ry

(
σ(σ + 1) + 3σ(1 − σ)Ry + 2(1 − σ)

2
R

2
y

))
− (σ − 1)

3 1

σ + (1 − σ)Ry
R

2
yRx

]

Define

f(σ) = (σ + (1− σ)Rx − 1)

(
2(σ + (1− σ)Ry)−

1

σ + (1− σ)Ry

(
σ(σ + 1) + 3σ(1− σ)Ry + 2(1− σ)2R2

y

))
− (σ − 1)3

1

σ + (1− σ)Ry
R2

yRx

=
σ(σ − 1)Rx(σ + (1− σ)Rx − 1)− (σ − 1)3R2

yRx

σ + (1− σ)Ry
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Therefore,

sign
[
pxpπ

∗
p∗p∗ + xπ∗

p∗p∗ − pxp∗π
∗
p∗p

]
= sign

[
σ(σ − 1)2(1−Rx)− (σ − 1)3R2

y

]
= sign

[
σ(1−Rx)− (σ − 1)(1−Rx)

2
]

= sign [σ − (σ − 1)(1−Rx)]

= sign [σ − (σ − 1)(1−Rx)− 1]

> sign [(σ − 1)Rx]

> 0

Given that πp∗ = ((1 + s)p − c)xp∗ > 0, π∗
p∗p > 0, and pxpπ

∗
p∗p∗ + xπ∗

p∗p∗ − pxp∗π
∗
p∗p > 0, we

have
sign[sB] < 0

C A general testing procedure

While in this paper we focus on a very simple CES environment to make Monte Car-
los straightforward to implement, in this appendix we show that this particular demand
structure is not needed to implement our conduct test. In particular, we briefly sketch
out in this section how the Hausman test be adapted to more flexible specifications of
demand, marginal cost, and conduct. The key requirement is that the demand model be
invertible in the sense of Berry and Haile (2014). More precisely, suppose the demand is
given by the following:11

qicm = Nmσic(δicm, δ−(i,c),m : γ)

Here, Nm is the size of market m and σ(, ;γ) is an unknown function that character-
izes the demand for firm (i, c). This demand system depends on J arguments; the first
argument is the firm (i, c)’s linear demand index δicm ≡ βXicm − picm + ξicm, where Xicm

is vector of observable product characteristics, picm is the price charged, and ξicm is a de-
mand shock that is known to consumers and firms, but not the econometrician or policy
maker.12 The remaining J − 1 arguments are a vector of the demand indexes for all other

11We work with a special case of Berry and Haile (2014) primarily to develop intuition; specifically, we
assume prices and product characteristics only affect demand through the linear index. This can be relaxed,
but at the cost of further notation.

12The fact that price enters with a coefficient of 1 is a normalization, since we can choose the units of ξicm
so that this holds while representing the same set of preferences; see Berry and Haile (2014).
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firms δ−(i,c)m ≡ {δjkm}(j,k)̸=(i,c).13 Berry and Haile (2014) show that under fairly weak
conditions, demand systems of this form are invertible, in the sense that there exists an
inverse function σ−1

ic (:,γ) such that:

δicm = σ−1
ic (Sm;γ) (44)

where Sm is a J × 1 vector of market shares qicm
Nm

. This can be used a basis for generating
the following demand estimation equation:

picm = βXicm − σ−1
ic (Sm;γ) + ξicm (45)

Berry and Haile (2014) show that the above model can be identified using a series of
supply side instruments that shift costs, τicm, as well as a instruments based on the ob-
servable product characteristics of other firms, X−icm.14 This generates a vector of demand
estimates, θ̂D =

(
β̂D, γ̂D

)
, which can immediately be used to the recover an estimate of

the demand shocks ξ̂icm = picm − β̂DXicm + σ−1
ic

(
Sm; γ̂

D
)
.

The supply side of the model for single product firms revolves around the specifica-
tion of a marginal cost function Cicm and conduct model R through a markup function
µRicm (Sm;γ) .

15 Suppose that marginal costs take the following form:

Cicm = g(τicm; δ) exp(ωicm)

where g(:, δ) is an unknown function parameterized by unknown vector δ, and τicm is a
vector of supply side variables (tariffs, distance, shipping prices, etc...), that we assume
are uncorrelated with productivity shocks ωicm. We can the generate an estimating equa-
tion for both supply and demand side parameters by imposing the conduct model:

13Note that usually these models also require the existence of an outside option good whose demand
index is normalized to 0 (or some other number). In our third market model developed earlier, this role
was played by the domestic firms in each market m. We leave the outside option implicit in the specification
of σic(.).

14These other firm observable product characteristic instruments are excluded from firm i’s demand
index. Berry and Haile (2014) show that this class of instrumental variable is crucial for identifying the
inverse market share function σ−1

ic (Sm;γ). In general, validity of these instruments requires that product
characteristics be chosen before demand shocks are realized and that demand shocks not be intrinsically
correlated with product characteristics.

15Note that which markups are generally functions of the prices, product characteristics, and demand
shocks of all competitors in a market, since we restrict attention to models with the demand inversion
property (44), then it immediately follows that the effect of prices, product characteristics, and demand
shocks on demand and markups will only occur through market shares, Sm.
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picm = µRicm (Sm;γ) g(τicm; δ) exp(ωicm)

Or after taking logs:

ln picm = lnµRicm (Sm;γ) + ln g(τicm; δ) + ωicm (46)

Here, the supply side can be identified by applying a standard nonlinear GMM esti-
mator to the above model.16 Estimating Equation (45) and Equation (46) simultaneous, as
we proposed for the simpler model above, however, can potentially generate more effi-
cient estimates conditional on imposing the correct pricing model R. Let θ̂R =

(
β̂R, γ̂R

)
denote the demand-side parameters recovered from this procedure. The Hausman test
for a particular conduct model R is then given by

H =
(
θ̂D − θ̂R

)′ (
Var

(
θ̂D − θ̂R

))−1 (
θ̂D − θ̂R

)
.

Hausman (1978) shows the test statistic H asymptotically has a chi-square distribution
with degrees of freedom equal to the number of elements of

(
β̂, γ̂

)
.

D Simulation setup

We simulate C production origins and each has N exporting firms. There are additional
M markets without any exporters. There is a local firm in each of the C +M markets that
produces and sells goods locally.
The demand functions are parameterized as

qicm = Ym
p−σicm exp (ξicm)

p1−σ0mm exp (ξ0mm) +
∑

c′
∑

j∈Ωc′m
p1−σjc′m exp (ξjc′m)

q0mm = Ym
1

p1−σ0mm exp (ξ0mm) +
∑

c′
∑

j∈Ωc′m
p1−σjc′m exp (ξjc′m)

16Note, however, τicm alone is not sufficient to identify the model. In particular, since exogeneity of
τicm is needed to pin down the unknown marginal cost function g(.), if we wish to also identify µR(Sm;γ),
further instruments are needed. Note, however, that we can solve this problem by noting that exogenous of
product characteristics Xm as well as cost shifters for other firms τ−(i,c),m, can be used to shift the endoge-
nous Sicm. Together τicm , τ−(i,c),m, and the vector of observed product characteristics Xm can be used as
instruments to identify µR(Sm;γ) and g(τicm; δ).
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The marginal costs are parameterized as

Cicm = τc(i)m exp (ωicm)

C0mm = τmm exp (ω0mm) = exp (ω0mm)

In simulations, we set σ = 4. The exogenous variables for each market m are simulated
as follows.

• ln (Ym) ∼ N
(
µY , V Y

)
: market size

• ξicm ∼ N
(
µξ, V ξ

)
: demand shifter of importing goods

• ωicm ∼ N (µω, V ω): cost shifter of exporters

• ξ0mm ∼ N
(
µξ0 , V ξ0

)
: demand shifter of local goods

• ω0mm ∼ N (µω, V ω): cost shifter of local firms

• τcm = 1 + exp(ψ) for c ̸= m with ψ ∼ N
(
ψω, V ψ

)
and τmm = 1: bilateral trade costs

All C +M markets are independent and the distribution parameters are common across
markets in one simulation. We set different distribution parameters of ξ for goods from
local firms and importing goods, which allows us to adjust the average market share of
local firms.
Equilibrium prices in each market are solved by the fixed-point iteration method. Specif-
ically,

pm = µR
m (pm, ξm) ◦MCm

where pm is a vector of prices, ξm is a vector of demand shifters, MCm is a vector of real-
ized marginal costs, and µR

m is the markup rule given a conduct. Both the left-hand side
and the right-hand side are vectors of the same dimension. To solve for the equilibrium
prices, we first guess that equilibrium prices solve the monopolistic competition pricing
rule p0

m = σ
σ−1

MCm. Then, for g = 0, 1, 2, . . . ,

1. Calculate PN
m = µR

m (Pg
m, ξm) ◦MCm

2. Check if PN
m = Pg

m. If yes, stop.

3. If not, generate Pg+1
m = wPg

m + (1 − w)PN
m, and return to step 1. w is the damping

factor.
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The equilibrium quantities are then calculated by plugging equilibrium prices into de-
mand functions.

For the classical two-firm third-market model, we have a slightly different setting. We
set C = 2, N = 1, and M = 1, and simulate the data for the third market only without any
local firms. The equilibrium prices are still solved by the fixed-point iteration method.

E Generalized case

We extend the welfare analysis to C = 3 production origins and N = 1 exporting firms
for each origin. Figure 8 shows the average welfare change W−W0

W0
% for both Bertrand and

Cournot DGPs. The exogenous parameters are the same as C = 2, N = 1 simulation case,
shown in Table 1.

Figure 8: Average welfare change W−W0

W0
%, generalized cases, C = 3, N = 1

(a) Bertrand DGP (b) Cournot DGP

Note: This figure visualizes the average welfare change under different numbers of
third-markets and inference approaches, for both Bertrand and Cournot DGPs. The Hausman
test is conducted with 1%, 5%, and 10% significance levels. The nearest neighbor approach
selects the model whose estimate σ̂R is closest to the demand IV estimate σ̂D. The average
welfare change is calculated as the average of W−W0

W0
% over all cases in each simulation. If the

policy-maker cannot infer the conduct, the optimal export subsidy or tax is set to zero, and the
welfare change is zero.
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F Additional figures

Figure 9: C = 2, N = 2, with local firm

(a) Larger exporting country imposes
export tax

(b) Smaller exporting country imposes
export tax

Note: This figure visualizes welfare changes of a country that imposes different
export subsidies or taxes in terms of price in the extended third-market model, given
conduct and a set of exogenous parameters. The rival country and the
“third-market” do not impose any export subsidy or tax. Denote the two production
origins as country 1 and country 2, and the “third-market” as country 3. We set
σ = 5, exp(ξ113) = 1.0, exp(ξ213) = 1.0, exp(ξ123) = 2.0, exp(ξ223) = 2.0,
exp(ξ033) = 1.0, exp(ω113) = exp(ω213) = exp(ω123) = exp(ω223) = 1.0, τ13 = 10.0,
τ23 = 5.0, τ33 = 1.0, Y3 = 10.0. Equilibrium prices, quantities and optimal export
subsidies or taxes are solved via fixed-point iteration.
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Figure 10: C = 4, N = 4, with local firm

(a) Larger exporting country imposes
export tax

(b) Smaller exporting country imposes
export tax

Note: This figure visualizes welfare changes of a country that imposes different
export subsidies or taxes in terms of price in the extended third-market model, given
conduct and a set of exogenous parameters. The rival countries and the
“third-market” do not impose any export subsidy or tax. Denote the four production
origins as country 1, 2, 3, and 4, and the “third-market” as country 5. We set σ = 5,
exp(ξic5) = 1.0 for i = 1, 2, 3, 4 and c = 1, 3, 4, exp(ξi25) = 2.0 for i = 1, 2, 3, 4,
exp(ξ055) = 1.0, exp(ωic5) = 1.0 for i = 1, 2, 3, 4 and c = 1, 2, 3, 4, exp(ω055) = 5.0,
τc5 = 4.0 for c = 1, 3, 4, τ25 = 2.0, τ55 = 1.0, Y5 = 10.0. (a) assumes that country 2
imposes optimal trade policy, and (b) assumes that country 1 imposes optimal trade
policy. Equilibrium prices, quantities and optimal export subsidies or taxes are
solved via fixed-point iteration.
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